1,022 research outputs found
Climate change and global agricultural potential. A case study of nigeria
This study presents a spatially specific assessment of the potential impacts of the greenhouse effect on crop production potentials and land productivity in Nigeria. To this effect a large number of scenarios were used consisting of results from experiments with General Circulation
Models (GCM’s) as well as sensitivity scenarios in which single variables were changed. Each scenario is characterised by level of increase of atmospheric CO2, change of stomatal resistance and climate change in terms of temperatures, rainfall and radiation. The effects of such changes have been assessed within the framework of the agro-ecological zones methodology, that was adapted and expanded for the purpose of the present study. Climate changes are applied to observed baseline conditions for the period 1960-1990 and simulated climate is used in combination with soil and landform conditions, plant physiological adaptations to elevated CO2 and a number of sustainability criteria (e.g. fallow period requirements) to calculate crop production potentials and land productivity. Scenario outputs are compared with current conditions to assess potential impacts and sensitivity of agricultural production to global change phenomena.
A large number of maps and tables summarise the potential impacts on crop production potentials and land productivity. The low predictive value of GCM’s and large differences between GCM’s only allow to draw conclusions of policy relevance taking into account a cautionary bandwidth of possible events. The Nigerian middle belt will hardly be affected because changes are likely to be limited and farmers may adapt by choosing other crop varieties.
The north of the country is very sensitive to changes of climate and the prevailing crops show little response to elevated CO2 levels. GCM’s are consistent in indicating climatic changes that lower land suitability for perennial crops in the south. The south-west, with a bimodal rainfall tendency, is particularly sensitive to climate change. Here small changes in scenario may cause either one long growing period or two short ones. However, lower productivity due to climate change, if any, is likely to be more than compensated by the effects of enhanced CO2 levels.
Prevalent crops in the south have a C3 photosynthesis pathway, that is responsive to enhanced
CO2 levels, which is likely to result in increased of productivity of annual crops such as yams and cassava. Global change may thus exacerbate the current disparities of crop production potentials between the north and the south of the country
On the String Consensus Problem and the Manhattan Sequence Consensus Problem
In the Manhattan Sequence Consensus problem (MSC problem) we are given
integer sequences, each of length , and we are to find an integer sequence
of length (called a consensus sequence), such that the maximum
Manhattan distance of from each of the input sequences is minimized. For
binary sequences Manhattan distance coincides with Hamming distance, hence in
this case the string consensus problem (also called string center problem or
closest string problem) is a special case of MSC. Our main result is a
practically efficient -time algorithm solving MSC for sequences.
Practicality of our algorithms has been verified experimentally. It improves
upon the quadratic algorithm by Amir et al.\ (SPIRE 2012) for string consensus
problem for binary strings. Similarly as in Amir's algorithm we use a
column-based framework. We replace the implied general integer linear
programming by its easy special cases, due to combinatorial properties of the
MSC for . We also show that for a general parameter any instance
can be reduced in linear time to a kernel of size , so the problem is
fixed-parameter tractable. Nevertheless, for this is still too large
for any naive solution to be feasible in practice.Comment: accepted to SPIRE 201
Improved lower bounds for the ground-state energy of many-body systems
New lower bounds for the binding energy of a quantum-mechanical system of
interacting particles are presented. The new bounds are expressed in terms of
two-particle quantities and improve the conventional bounds of the Hall-Post
type. They are constructed by considering not only the energy in the
two-particle system, but also the structure of the pair wave function. We apply
the formal results to various numerical examples, and show that in some cases
dramatic improvement over the existing bounds is reached.Comment: 29 pages, 5 figures, to be published in Phys. Rev.
The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate
We study the Gross-Pitaevskii (GP) energy functional for a fast rotating
Bose-Einstein condensate on the unit disc in two dimensions. Writing the
coupling parameter as 1 / \eps^2 we consider the asymptotic regime \eps
\to 0 with the angular velocity proportional to
(\eps^2|\log\eps|)^{-1} . We prove that if \Omega = \Omega_0
(\eps^2|\log\eps|)^{-1} and then a minimizer of
the GP energy functional has no zeros in an annulus at the boundary of the disc
that contains the bulk of the mass. The vorticity resides in a complementary
`hole' around the center where the density is vanishingly small. Moreover, we
prove a lower bound to the ground state energy that matches, up to small
errors, the upper bound obtained from an optimal giant vortex trial function,
and also that the winding number of a GP minimizer around the disc is in accord
with the phase of this trial function.Comment: 52 pages, PDFLaTex. Minor corrections, sign convention modified. To
be published in Commun. Math. Phy
Copper benchmark experiment for the testing of JEFF-3.2 nuclear data for fusion applications
A neutronics benchmark experiment on a pure Copper block (dimensions 60 × 70 × 70 cm3) aimed at testing and validating the recent nuclear data libraries for fusion applications was performed in the frame of the European Fusion Program at the 14 MeV ENEA Frascati Neutron Generator (FNG). Reaction rates, neutron flux spectra and doses were measured using different experimental techniques (e.g. activation foils techniques, NE213 scintillator and thermoluminescent detectors). This paper first summarizes the analyses of the experiment carried-out using the MCNP5 Monte Carlo code and the European JEFF-3.2 library. Large discrepancies between calculation (C) and experiment (E) were found for the reaction rates both in the high and low neutron energy range. The analysis was complemented by sensitivity/uncertainty analyses (S/U) using the deterministic and Monte Carlo SUSD3D and MCSEN codes, respectively. The S/U analyses enabled to identify the cross sections and energy ranges which are mostly affecting the calculated responses. The largest discrepancy among the C/E values was observed for the thermal (capture) reactions indicating severe deficiencies in the 63,65Cu capture and elastic cross sections at lower rather than at high energy. Deterministic and MC codes produced similar results. The 14 MeV copper experiment and its analysis thus calls for a revision of the JEFF-3.2 copper cross section and covariance data evaluation. A new analysis of the experiment was performed with the MCNP5 code using the revised JEFF-3.3-T2 library released by NEA and a new, not yet distributed, revised JEFF-3.2 Cu evaluation produced by KIT. A noticeable improvement of the C/E results was obtained with both new libraries
The interaction of a gap with a free boundary in a two dimensional dimer system
Let be a fixed vertical lattice line of the unit triangular lattice in
the plane, and let \Cal H be the half plane to the left of . We
consider lozenge tilings of \Cal H that have a triangular gap of side-length
two and in which is a free boundary - i.e., tiles are allowed to
protrude out half-way across . We prove that the correlation function of
this gap near the free boundary has asymptotics ,
, where is the distance from the gap to the free boundary. This
parallels the electrostatic phenomenon by which the field of an electric charge
near a conductor can be obtained by the method of images.Comment: 34 pages, AmS-Te
Second harmonic generation and birefringence of some ternary pnictide semiconductors
A first-principles study of the birefringence and the frequency dependent
second harmonic generation (SHG) coefficients of the ternary pnictide
semiconductors with formula ABC (A = Zn, Cd; B = Si, Ge; C = As, P) with
the chalcopyrite structures was carried out. We show that a simple empirical
observation that a smaller value of the gap is correlated with larger value of
SHG is qualitatively true. However, simple inverse power scaling laws between
gaps and SHG were not found. Instead, the real value of the nonlinear response
is a result of a very delicate balance between different intraband and
interband terms.Comment: 13 pages, 12 figure
Vortex Rings in Fast Rotating Bose-Einstein Condensates
When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex
phase appears, that is the condensate becomes annular with no vortices in the
bulk but a macroscopic phase circulation around the central hole. In a former
paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have
studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii
energy on the unit disc. In particular we computed an upper bound to the
critical speed for the transition to the giant vortex phase. In this paper we
confirm that this upper bound is optimal by proving that if the rotation speed
is taken slightly below the threshold there are vortices in the condensate. We
prove that they gather along a particular circle on which they are evenly
distributed. This is done by providing new upper and lower bounds to the GP
energy.Comment: to appear in Archive of Rational Mechanics and Analysi
Spin structure of the nucleon: QCD evolution, lattice results and models
The question how the spin of the nucleon is distributed among its quark and
gluon constituents is still a subject of intense investigations. Lattice QCD
has progressed to provide information about spin fractions and orbital angular
momentum contributions for up- and down-quarks in the proton, at a typical
scale \mu^2~4 GeV^2. On the other hand, chiral quark models have traditionally
been used for orientation at low momentum scales. In the comparison of such
model calculations with experiment or lattice QCD, fixing the model scale and
the treatment of scale evolution are essential. In this paper, we present a
refined model calculation and a QCD evolution of lattice results up to
next-to-next-to-leading order. We compare this approach with the Myhrer-Thomas
scenario for resolving the proton spin puzzle.Comment: 11 pages, 6 figures, equation (9) has been corrected leading to a
revised figure 1b. Revision matches published versio
Non-perturbative momentum dependence of the coupling constant and hadronic models
Models of hadron structure are associated with a hadronic scale which allows
by perturbative evolution to calculate observables in the deep inelastic
region. The resolution of Dyson-Schwinger equations leads to the freezing of
the QCD running coupling (effective charge) in the infrared, which is best
understood as a dynamical generation of a gluon mass function, giving rise to a
momentum dependence which is free from infrared divergences. We use this new
development to understand why perturbative treatments are working reasonably
well despite the smallness of the hadronic scale.Comment: Changes in Acknowledgments and PACS number
- …