12 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Developmental regulation of heat-shock response in mouse oogenesis: identification of differentially responsive oocyte classes during Graafian follicle development.

    No full text
    The response to heat (hs response) of dictyate mouse oocytes at various differentiation stages was analyzed in vitro, by determining patterns of oocyte heat-shock (hs) gene expression and heat-shock protein (HSP) synthesis, under both normal conditions and after an hs. Growing oocytes constitutively synthesized HSP89 and HSC70, and, in contrast to preovulatory oocytes which do not display an hs response, displayed a heat-elicited, transcription-dependent synthesis of two HSP68 isoforms, but not of other inducible HSPs. To determine the developmental schedule of hs response disappearance during oogenesis, fully grown oocytes from Graafian follicles were morphologically sorted into three discrete classes related to the follicle development, namely, loosely associated with granulosa cells (LA oocytes, from small Graafian follicles), intermediately associated with granulosa cells (IA oocytes, from medium-sized Graafian follicles), and cumulus-associated (CA oocytes, from mature follicles). LA oocytes displayed an hs response qualitatively similar to, but smaller in extent than, that of growing oocytes, and were able to resume and complete spontaneous meiotic maturation in vitro at a high rate after hs. We conclude that hs response of mouse dictyate oocytes is maximal during growth period, significantly declines with acquisition of full oocyte size and antrum formation within the follicle, and is finally shut off with oocyte/follicle terminal differentiation

    Patient and physician evaluation of the severity of acute asthma exacerbations

    No full text
    We studied the ability of patients not experienced in the use of peak expiratory flow meters to assess the severity of their asthma exacerbations and compared it to the assessment of experienced clinicians. We also evaluated which data of physical examination and medical history are used by physicians to subjectively evaluate the severity of asthma attacks. Fifty-seven adult patients (15 men and 42 women, with a mean (± SD) age of 37.3 ± 14.5 years and 24.0 ± 17.9 years of asthma symptoms) with asthma exacerbations were evaluated in a University Hospital Emergency Department. Patients and physicians independently evaluated the severity of the asthma attack using a linear scale. Patient score, physician score and forced expiratory volume at the first second (FEV1) were correlated with history and physical examination variables, and were also considered as dependent variables in multiple linear regression models. FEV1 correlated significantly with the physician score (rho = 0.42, P = 0.001), but not with patient score (rho = 0.03; P = 0.77). Use of neck accessory muscles, expiratory time and wheezing intensity were the explanatory variables in the FEV1 regression model and were also present in the physician score model. We conclude that physicians evaluate asthma exacerbation severity better than patients and that physician's scoring of asthma severity correlated significantly with objective measures of airway obstruction (FEV1). Some variables (the use of neck accessory muscles, expiratory time and wheezing intensity) persisted as explanatory variables in physician score and FEV1 regression models, and should be emphasized in medical schools and emergency settings
    corecore