6,930 research outputs found

    Highly linear, sensitive analog-to-digital converter

    Get PDF
    Analog-to-digital converter converts 10 volt full scale input signal into 13 bit digital output. Advantages include high sensitivity, linearity, low quantitizing error, high resistance to mechanical shock and vibration loads, and temporary data storage capabilities

    The Effect of Combined Magnetic Geometries on Thermally Driven Winds I: Interaction of Dipolar and Quadrupolar Fields

    Get PDF
    Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest order fields such as the dipole, quadrupole and octupole modes. Magnetised stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex, but singular, magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulations with mixed field, along with 10 of each pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases are well described by a broken power law behaviour, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilising the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For Solar parameters, the lowest order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.Comment: 15 pages + 9 figures (main), 3 pages + 1 figure (appendix), accepted for publication to Ap

    Lasing in Strong Coupling

    Full text link
    An almost ideal thresholdless laser can be realized in the strong-coupling regime of light-matter interaction, with Poissonian fluctuations of the field at all pumping powers and all intensities of the field. This ideal scenario is thwarted by quantum nonlinearities when crossing from the linear to the stimulated emission regime, resulting in a universal jump in the second order coherence, which measurement could however be used to establish a standard of lasing in strong coupling.Comment: 5 pages, 2 figure

    The Effect of Magnetic Variability on Stellar Angular Momentum Loss II: The Sun, 61 Cygni A, ϵ\epsilon Eridani, ξ\xi Bootis A and τ\tau Bootis A

    Get PDF
    The magnetic fields of low-mass stars are observed to be variable on decadal timescales, ranging in behaviour from cyclic to stochastic. The changing strength and geometry of the magnetic field should modify the efficiency of angular momentum loss by stellar winds, but this has not been well quantified. In Finley et al. (2018) we investigated the variability of the Sun, and calculated the time-varying angular momentum loss rate in the solar wind. In this work, we focus on four low-mass stars that have all had their surface magnetic fields mapped for multiple epochs. Using mass loss rates determined from astrospheric Lyman-α\alpha absorption, in conjunction with scaling relations from the MHD simulations of Finley & Matt (2018), we calculate the torque applied to each star by their magnetised stellar winds. The variability of the braking torque can be significant. For example, the largest torque for ϵ\epsilon Eri is twice its decadal averaged value. This variation is comparable to that observed in the solar wind, when sparsely sampled. On average, the torques in our sample range from 0.5-1.5 times their average value. We compare these results to the torques of Matt et al. (2015), which use observed stellar rotation rates to infer the long-time averaged torque on stars. We find that our stellar wind torques are systematically lower than the long-time average values, by a factor of ~3-30. Stellar wind variability appears unable to resolve this discrepancy, implying that there remain some problems with observed wind parameters, stellar wind models, or the long-term evolution models, which have yet to be understood.Comment: 15 pages + 8 figures, accepted for publication to Ap

    The Extraction of Waxes and Wax Mixtures by Means of Common Organic Solvents

    Get PDF
    This work was performed with the intention of giving some information of the solubility of the more common waxes, by means of extraction with several commercial solvents. Besides the individual waxes, various mixtures of waxes were also used to determine the effect of the mixtures on the extractability. Determinations are also made to find the extractable matter in a commercial furniture polish and shellac. The acid, saponification and iodine values of the polish and shellac are also found. Very little work seems to have been done on the accurate determination of percentage of extractable matter in waxes and mixtures of waxes. For this reason the references made throughout the work concern waxes in general and not their extractability

    Note on Invariants of the Weyl Tensor

    Get PDF
    Algebraically special gravitational fields are described using algebraic and differential invariants of the Weyl tensor. A type III invariant is also given and calculated for Robinson-Trautman spaces.Comment: 3 pages, no figures, corrected expression (12
    corecore