3 research outputs found
Utilization and transformation of aquatic humic substances by autochthonous microorganisms.
Aquatic humic substances (HS) from a bog lake water, a river water, and a groundwater were isolated after enrichment on XAD 8 columns and added to a Czapek-Dox nutrient broth which was used either in full strength or without glucose and/or NaNO3. The individual flasks were inoculated with natural microbial populations of corresponding water samples or with a Pseudomonas fluorescens strain isolated from groundwater. The presence of HS resulted in an increase of bacterial numbers in nearly all cultures incubated for 3 weeks at 25 °C on a shaker. HS reisolated from cultures without glucose or NaNO3 showed no or only minor quantitative differences as compared to those from sterile controls. In full strength nutrient broth up to 27% of HS were utilized. Data obtained by spectroscopic methods (UV/vis/FTIR) and elemental analysis indicated a decrease in particle size and a loss in aromaticity and aliphatic carbon in HS reisolated from the microbial cultures. Simultaneously an increase in the N content of HS was observed, which probably originated from some constituents of microbial biomass such as proteins and amino sugars. The NMR data also documented that significant transformations of HS occurred in the individual microbial cultures. After incubation, increased amounts of aromatic acids were detected in some liquid media and residual HS by GC/MS or capillary electrophoresis. 1H NMR spectroscopy was less effective in indicating structural differences in the HS than 13C NMR but revealed considerable detail of the microbial degradation of riverine HS, when limited sample was available. The newly developed NMR increment analysis provided substantial detail of aromatic structures in a microbially altered HS. The microbial degradation of HS strongly depended on the composition of the HS, the species selection of the microorganisms, and to a lesser extent on the culture conditions. For any series of identical inoculum and HS, full broth media initiated the most extensive alteration of HS
Recommended from our members
Humic substance formation during wastewater infiltration
Soil infiltration of wastewater effluents is a widely practiced method of treatment and disposal/reuse throughout the world. Renovation of the wastewater results from a wide variety of complex physicochemical and biological processes. One set of processes is speculated to involve the accumulation of organic matter by filtration and sorption followed by formation of humic substances. This humic substance formation can effect the performance of soil treatment systems by contributing to soil pore clogging and reduction in hydraulic capacity, and by yielding reactive substances and an enhancement of purification processes. While there has been a wealth of research into the nature and genesis of humic substances in terrestrial environments, there has been limited research of humic substance formation during soil infiltration of wastewater. The purpose of the research reported herein was to determine if humic substances can form under conditions typical of those present during wastewater infiltration into natural soil systems. This work was conducted during 1989 to 1990 as a collaborative effort between the Centre for Soil and Environmental Research, located in Aas, Norway and the Institute for Water, Soil and Air Hygiene located in Langen, West Germany. 11 refs., 3 figs., 6 tabs