5 research outputs found

    Using geographically weighted regression to explore the spatially heterogeneous spread of bovine tuberculosis in England and Wales

    Get PDF
    An understanding of the factors that affect the spread of endemic bovine tuberculosis (bTB) is critical for the development of measures to stop and reverse this spread. Analyses of spatial data need to account for the inherent spatial heterogeneity within the data, or else spatial autocorrelation can lead to an overestimate of the significance of variables. This study used three methods of analysis—least-squares linear regression with a spatial autocorrelation term, geographically weighted regression (GWR) and boosted regression tree (BRT) analysis—to identify the factors that influence the spread of endemic bTB at a local level in England and Wales. The linear regression and GWR methods demonstrated the importance of accounting for spatial differences in risk factors for bTB, and showed some consistency in the identification of certain factors related to flooding, disease history and the presence of multiple genotypes of bTB. This is the first attempt to explore the factors associated with the spread of endemic bTB in England and Wales using GWR. This technique improves on least-squares linear regression approaches by identifying regional differences in the factors associated with bTB spread. However, interpretation of these complex regional differences is difficult and the approach does not lend itself to predictive models which are likely to be of more value to policy makers. Methods such as BRT may be more suited to such a task. Here we have demonstrated that GWR and BRT can produce comparable outputs

    Predicting long-term urban growth in Beijing (China) with new factors and constraints of environmental change under integrated stochastic and fuzzy uncertainties

    No full text
    Numerous studies related to the simulation and prediction of urban growth to address land-use and land-cover (LULC) changes have been conducted in recent years, but very few have considered the impact of climate change, flooding impact, government relocation, corridor cities, and long-term rainfall variations simultaneously. To bridge the gap, this study predicts possible future LULC changes for 2030 and 2050 in Beijing (China), since Beijing is one of the fastest-growing megacities in the world. The proposed integrated modeling analysis covers four key scenarios to reflect the influences of different factors and constraints on LULC changes, in which cellular automata, Markov chain, and multi-criteria evaluation are fully coupled. While fuzzy membership function was used to address the uncertainty associated with the decision analysis, Markov chain, which is regarded as a stochastic process, was applied to predict future urban growth pathways. In addition, a statistical downscaling model driven by possible climate change scenarios was employed to address long-term rainfall variations in Beijing, China. This study differs from previous ones for Beijing in terms of not only the effects of climate change and flooding impact but also the newly-developed economic free trade zone in Xiong’an and the central government’s plan to relocate to the Tongzhou district. Findings indicate that there is no marked difference in LULC over the four key scenarios. Compared to the baseline LULC in 2010, the predicted results indicate that urban expansion is expected to increase more than 6 and 11% in 2030 and 2050, respectively
    corecore