76 research outputs found
Response to gefitinib and erlotinib in Non-small cell lung cancer: a retrospective study
<p>Abstract</p> <p>Background</p> <p>In Non-small cell lung cancer (NSCLC), an overactive epidermal growth factor receptor (EGFR) pathway is a component of the malignant phenotype. Two tyrosine kinase inhibitors (TKIs) of EGFR, gefinitib and erlotinib, have been used with variable benefit.</p> <p>Methods</p> <p>We have analyzed outcome data of a population of NSCLC patients that received these TKIs to determine the benefit derived and to define the clinical and molecular parameters that correlate with response. Tumor tissue from a subgroup of these patients was analyzed by immunohistochemistry to measure the expression level of EGFR and four activated (phosphorylated) members of the pathway, pEGFR, pERK, pAKT, and pSTAT3.</p> <p>Results</p> <p>Erlotinib was slightly superior to gefitinib in all measures of response, although the differences were not statistically significant. The most robust clinical predictors of time to progression (TTP) were best response and rash (p < 0.0001). A higher level of pEGFR was associated with longer TTP, while the total EGFR level was not associated with response. Higher levels of pAKT and pSTAT3 were also associated with longer TTP. In contrast, a higher level of pERK1/2 was associated with shorter TTP.</p> <p>Conclusion</p> <p>These observations suggest the hypothesis that tumor cells that have activated EGFR pathways, presumably being utilized for survival, are clinically relevant targets for pathway inhibition. An accurate molecular predictive model of TKI response should include activated members of the EGFR pathway. TKIs may be best reserved for tumors expressing pEGFR and pAKT or pSTAT, and little pERK. In the absence of molecular predictors of response, the appearance of a rash and a positive first scan are good clinical indicators of response.</p
Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model
<p>Abstract</p> <p>Background</p> <p>Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions <it>in vitro </it>in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays.</p> <p>Methods</p> <p>One family of peptides with high activity is derived from the α-fibrils of type IV collagen. Based on the results from the <it>in vitro </it>screening, we have evaluated the ability of a 20 amino acid peptide derived from the α5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed <it>in vivo </it>angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line.</p> <p>Results</p> <p>Pentastatin-1 decreased the invasion of vessels into angioreactors <it>in vivo </it>in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density <it>in vivo </it>in a small cell lung cancer xenograft model.</p> <p>Conclusions</p> <p>The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.</p
Disease-specific survival for limited-stage small-cell lung cancer affected by statistical method of assessment
BACKGROUND: In general, prognosis and impact of prognostic/predictive factors are assessed with Kaplan-Meier plots and/or the Cox proportional hazard model. There might be substantive differences from the results using these models for the same patients, if different statistical methods were used, for example, Boag log-normal (cure-rate model), or log-normal survival analysis. METHODS: Cohort of 244 limited-stage small-cell lung cancer patients, were accrued between 1981 and 1998, and followed to the end of 2005. The endpoint was death with or from lung cancer, for disease-specific survival (DSS). DSS at 1-, 3- and 5-years, with 95% confidence limits, are reported for all patients using the Boag, Kaplan-Meier, Cox, and log-normal survival analysis methods. Factors with significant effects on DSS were identified with step-wise forward multivariate Cox and log-normal survival analyses. Then, DSS was ascertained for patients with specific characteristics defined by these factors. RESULTS: The median follow-up of those alive was 9.5 years. The lack of events after 1966 days precluded comparison after 5 years. DSS assessed by the four methods in the full cohort differed by 0–2% at 1 year, 0–12% at 3 years, and 0–1% at 5 years. Log-normal survival analysis indicated DSS of 38% at 3 years, 10–12% higher than with other methods; univariate 95% confidence limits were non-overlapping. Surgical resection, hemoglobin level, lymph node involvement, and superior vena cava (SVC) obstruction significantly impacted DSS. DSS assessed by the Cox and log-normal survival analysis methods for four clinical risk groups differed by 1–6% at 1 year, 15–26% at 3 years, and 0–12% at 5 years; multivariate 95% confidence limits were overlapping in all instances. CONCLUSION: Surgical resection, hemoglobin level, lymph node involvement, and superior vena cava (SVC) obstruction all significantly impacted DSS. Apparent DSS for patients was influenced by the statistical methods of assessment. This would be clinically relevant in the development or improvement of clinical management strategies
Heparan sulphate synthetic and editing enzymes in ovarian cancer
Several angiogenic growth factors including fibroblast growth factors 1 and 2 (FGF1 and FGF2) depend on heparan sulphate (HS) for biological activity. We previously showed that all cellular elements in ovarian tumour tissue synthesised HS but biologically active HS (i.e. HS capable of binding FGF2 and its receptor) was confined to ovarian tumour endothelium. In this study, we have sought to explain this observation. Heparan sulphate sulphotransferases 1 and 2 (HS6ST1 and HS6ST2) attach sulphate groups to C-6 of glucosamine residues in HS that are critical for FGF2 activation. These enzymes were strongly expressed by tumour cells, but only HS6ST1 was found in endothelial cells. Immunostaining with the 3G10 antibody of tissue sections pretreated with heparinases indicated that HS proteoglycans were produced by tumour and endothelial cells. These results indicated that, in contrast to the endothelium, HS produced by tumour cells may be modified by cell-surface heparanase (HPA1) or endosulphatase (SULF). Protein and RNA analysis revealed that HPA1 was strongly expressed by ovarian tumour cells in eight of ten specimens examined. HSULF-1, which removes specific 6-O-sulphate groups from HS, was abundant in tumour cells but weakly expressed in the endothelium. If this enzyme was responsible for the lack of biologically active HS on the tumour cell surface, we would expect exogenous FGF2 binding to be preserved; we showed previously that this was indeed the case although FGF2 binding was reduced compared to the endothelium and stroma. Thus, the combined effects of heparanase and HSULF could account for the lack of biologically active HS in tumour cells rather than deficiencies in the biosynthetic enzymes
Expression and prognostic relevance of activated extracellular-regulated kinases (ERK1/2) in breast cancer
Extracellular-regulated kinases (ERK1, ERK2) play important roles in the malignant behaviour of breast cancer cells in vitro. In our present study, 148 clinical breast cancer samples (120 cases with follow-up data) were studied for the expression of ERK1, ERK2 and their phosphorylated forms p-ERK1 and p-ERK2 by immunoblotting, and p-ERK1/2 expression in corresponding paraffin sections was analysed by immunohistochemistry. The results were correlated with established clinical and histological prognostic parameters, follow-up data and expression of seven cell-cycle regulatory proteins as well as MMP1, MMP9, PAI-1 and AP-1 transcription factors, which had been analysed before. High p-ERK1 expression as determined by immunoblots correlated significantly with a low frequency of recurrences and infrequent fatal outcome (P=0.007 and 0.008) and was an independent indicator of long relapse-free and overall survival in multivariate analysis. By immunohistochemistry, strong p-ERK staining in tumour cells was associated with early stages (P=0.020), negative nodal status (P=0.003) and long recurrence-free survival (P=0.017). In contrast, expression of the unphosphorylated kinases ERK1 and ERK2 was not associated with clinical and histological prognostic parameters, except a positive correlation with oestrogen receptor status. Comparison with the expression of formerly analysed cell-cycle- and invasion-associated proteins corroborates our conclusion that activation of ERK1 and ERK2 is not associated with enhanced proliferation and invasion of mammary carcinomas
Astaxanthin vs placebo on arterial stiffness, oxidative stress and inflammation in renal transplant patients (Xanthin): a randomised controlled trial
Background: There is evidence that renal transplant recipients have accelerated atherosclerosis manifest by increased cardiovascular morbidity and mortality. The high incidence of atherosclerosis is, in part, related to increased arterial stiffness, vascular dysfunction, elevated oxidative stress and inflammation associated with immunosuppressive therapy. The dietary supplement astaxanthin has shown promise as an antioxidant and anti-inflammatory therapeutic agent in cardiovascular disease. The aim of this trial is to investigate the effects of astaxanthin supplementation on arterial stiffness, oxidative stress and inflammation in renal transplant patients
Phospho-ERK and AKT status, but not KRAS mutation status, are associated with outcomes in rectal cancer treated with chemoradiotherapy
<p>Abstract</p> <p>Background</p> <p><it>KRAS </it>mutations may predict poor response to radiotherapy. Downstream events from <it>KRAS</it>, such as activation of <it>BRAF</it>, AKT and ERK, may also confer prognostic information but have not been tested in rectal cancer (RC). Our objective was to explore the relationships of <it>KRAS </it>and <it>BRAF </it>mutation status with p-AKT and p-ERK and outcomes in RC.</p> <p>Methods</p> <p>Pre-radiotherapy RC tumor biopsies were evaluated. <it>KRAS </it>and <it>BRAF </it>mutations were assessed by pyrosequencing; p-AKT and p-ERK expression by immunohistochemistry.</p> <p>Results</p> <p>Of 70 patients, mean age was 58; 36% stage II, 56% stage III, and 9% stage IV. Responses to neoadjuvant chemoradiotherapy: 64% limited, 19% major, and 17% pathologic complete response. 64% were <it>KRAS </it>WT, 95% were <it>BRAF </it>WT. High p-ERK levels were associated with improved OS but not for p-AKT. High levels of p-AKT and p-ERK expression were associated with better responses. <it>KRAS </it>WT correlated with lower p-AKT expression but not p-ERK expression. No differences in OS, residual disease, or tumor downstaging were detected by <it>KRAS </it>status.</p> <p>Conclusions</p> <p><it>KRAS </it>mutation was not associated with lesser response to chemoradiotherapy or worse OS. High p-ERK expression was associated with better OS and response. Higher p-AKT expression was correlated with better response but not OS.</p
- …