1,849 research outputs found
A possible method for non-Hermitian and non--symmetric Hamiltonian systems
A possible method to investigate non-Hermitian Hamiltonians is suggested
through finding a Hermitian operator and defining the annihilation and
creation operators to be -pseudo-Hermitian adjoint to each other. The
operator represents the -pseudo-Hermiticity of Hamiltonians.
As an example, a non-Hermitian and non--symmetric Hamiltonian with
imaginary linear coordinate and linear momentum terms is constructed and
analyzed in detail. The operator is found, based on which, a real
spectrum and a positive-definite inner product, together with the probability
explanation of wave functions, the orthogonality of eigenstates, and the
unitarity of time evolution, are obtained for the non-Hermitian and
non--symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be
coupled when it is extended to the canonical noncommutative space with
noncommutative spatial coordinate operators and noncommutative momentum
operators as well. Our method is applicable to the coupled Hamiltonian. Then
the first and second order noncommutative corrections of energy levels are
calculated, and in particular the reality of energy spectra, the
positive-definiteness of inner products, and the related properties (the
probability explanation of wave functions, the orthogonality of eigenstates,
and the unitarity of time evolution) are found not to be altered by the
noncommutativity.Comment: 15 pages, no figures; v2: clarifications added; v3: 16 pages, 1
figure, clarifications made clearer; v4: 19 pages, the main context is
completely rewritten; v5: 25 pages, title slightly changed, clarifications
added, the final version to appear in PLOS ON
Applications of Nature-Inspired Algorithms for Dimension Reduction: Enabling Efficient Data Analytics
In [1], we have explored the theoretical aspects of feature selection and evolutionary algorithms. In this chapter, we focus on optimization algorithms for enhancing data analytic process, i.e., we propose to explore applications of nature-inspired algorithms in data science. Feature selection optimization is a hybrid approach leveraging feature selection techniques and evolutionary algorithms process to optimize the selected features. Prior works solve this problem iteratively to converge to an optimal feature subset. Feature selection optimization is a non-specific domain approach. Data scientists mainly attempt to find an advanced way to analyze data n with high computational efficiency and low time complexity, leading to efficient data analytics. Thus, by increasing generated/measured/sensed data from various sources, analysis, manipulation and illustration of data grow exponentially. Due to the large scale data sets, Curse of dimensionality (CoD) is one of the NP-hard problems in data science. Hence, several efforts have been focused on leveraging evolutionary algorithms (EAs) to address the complex issues in large scale data analytics problems. Dimension reduction, together with EAs, lends itself to solve CoD and solve complex problems, in terms of time complexity, efficiently. In this chapter, we first provide a brief overview of previous studies that focused on solving CoD using feature extraction optimization process. We then discuss practical examples of research studies are successfully tackled some application domains, such as image processing, sentiment analysis, network traffics / anomalies analysis, credit score analysis and other benchmark functions/data sets analysis
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
Abnormal White Matter Integrity in Adolescents with Internet Addiction Disorder: A Tract-Based Spatial Statistics Study
Background: Internet addiction disorder (IAD) is currently becoming a serious mental health issue around the globe. Previous studies regarding IAD were mainly focused on associated psychological examinations. However, there are few studies on brain structure and function about IAD. In this study, we used diffusion tensor imaging (DTI) to investigate white matter integrity in adolescents with IAD. Methodology/Principal Findings: Seventeen IAD subjects and sixteen healthy controls without IAD participated in this study. Whole brain voxel-wise analysis of fractional anisotropy (FA) was performed by tract-based spatial statistics (TBSS) to localize abnormal white matter regions between groups. TBSS demonstrated that IAD had significantly lower FA than controls throughout the brain, including the orbito-frontal white matter, corpus callosum, cingulum, inferior fronto-occipital fasciculus, and corona radiation, internal and external capsules, while exhibiting no areas of higher FA. Volume-of-interest (VOI) analysis was used to detect changes of diffusivity indices in the regions showing FA abnormalities. In most VOIs, FA reductions were caused by an increase in radial diffusivity while no changes in axial diffusivity. Correlation analysis was performed to assess the relationship between FA and behavioral measures within the IAD group. Significantly negative correlations were found between FA values in the left genu of the corpus callosum and the Screen for Child Anxiety Related Emotional Disorders, and between FA values in the left external capsule and the Young’s Internet addiction scale
Effect of Ca2+ Channel Block on Glycerol Metabolism in Dunaliella salina under Hypoosmotic and Hyperosmotic Stresses
The effect of Ca2+ channel blockers on cytosolic Ca2+ levels and the role of Ca2+ in glycerol metabolism of Dunaliella salina under hypoosmotic or hyperosmotic stress were investigated using the confocal laser scanning microscope (CLSM). Results showed that intracellular Ca2+ concentration increased rapidly when extracellular salinity suddenly decreased or increased, but the increase could be inhibited by pretreatment of Ca2+ channel blockers LaCl3, verapamil or ruthenium red. The changes of glycerol content and G3pdh activity in D. salina to respect to hypoosmotic or hyperosmotic stress were also inhibited in different degrees by pretreatment of Ca2+ channel blockers, indicating that the influx of Ca2+ via Ca2+ channels are required for the transduction of osmotic signal to regulate osmotic responses of D. salina to the changes of salinity. Differences of the three blockers in block effect suggested that they may act on different channels or had different action sites, including influx of Ca2+ from the extracellular space via Ca2+ channels localized in the plasma membrane or from intracellular calcium store via the mitochondrial. Other Ca2+-mediated or non-Ca2+-mediated osmotic signal pathway may exist in Dunaliella in response to hypoosmotic and hyperosmotic stresses
Glycosylation of mucins present in gastric juice: the effect of helicobacter pylori eradication treatment
It is suggested that gastric mucins, and in particular some specific glycan structures that can act as carbohydrate receptors, are involved in the interactions with Helicobacter pylori adhesins. The main aim of our study was to evaluate glycosylation pattern of glycoproteins of gastric juice before and at the end of eradication therapy. Gastric juices were taken from 13 clinical patients and subjected to analysis. Pooled fractions of the void volume obtained after gel filtration were subjected to ELISA tests. To assess the relative amounts of carbohydrate structures, lectins and monoclonal antibodies were used. Changes in the level of MUC 1 and MUC 5AC mucins and of carbohydrate structures, which are suggested to be receptors for Helicobacter pylori adhesins, were observed by the end of the eradication treatment. Our results support the idea about the involvement of MUC 5AC and MUC 1 with some specific sugar structures in the mechanism of Helicobacter pylori infection
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …