33 research outputs found

    The use of a Psoroptes ovis serodiagnostic test for the analysis of a natural outbreak of sheep scab

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sheep scab is a highly contagious disease of sheep caused by the ectoparasitic mite <it>Psoroptes ovis</it>. The disease is endemic in the UK and has significant economic impact through its effects on performance and welfare. Diagnosis of sheep scab is achieved through observation of clinical signs e.g. itching, pruritis and wool loss and ultimately through the detection of mites in skin scrapings. Early stages of infestation are often difficult to diagnose and sub-clinical animals can be a major factor in disease spread. The development of a diagnostic assay would enable farmers and veterinarians to detect disease at an early stage, reducing the risk of developing clinical disease and limiting spread.</p> <p>Methods</p> <p>Serum samples were obtained from an outbreak of sheep scab within an experimental flock (n = 480 (3 samples each from 160 sheep)) allowing the assessment, by ELISA of sheep scab specific antibody prior to infestation, mid-outbreak (combined with clinical assessment) and post-treatment.</p> <p>Results</p> <p>Analysis of pre-infestation samples demonstrated low levels of potential false positives (3.8%). Of the 27 animals with clinical or behavioural signs of disease 25 tested positive at the mid-outbreak sampling period, however, the remaining 2 sheep tested positive at the subsequent sampling period. Clinical assessment revealed the absence of clinical or behavioural signs of disease in 132 sheep, whilst analysis of mid-outbreak samples showed that 105 of these clinically negative animals were serologically positive, representing potential sub-clinical infestations.</p> <p>Conclusions</p> <p>This study demonstrates that this ELISA test can effectively diagnose sheep scab in a natural outbreak of disease, and more importantly, highlights its ability to detect sub-clinically infested animals. This ELISA, employing a single recombinant antigen, represents a major step forward in the diagnosis of sheep scab and may prove to be critical in any future control program.</p

    Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria

    Get PDF
    Bacteria commonly expose non-flagellar proteinaceous appendages on their outer surfaces. These extracellular structures, called pili or fimbriae, are employed in attachment and invasion, biofilm formation, cell motility or protein and DNA transport across membranes. Over the past 15 years, the power of molecular and structural techniques has revolutionalized our understanding of the biogenesis, structure, function and mode of action of these bacterial organelles. Here, we review the five known classes of Gram-negative non-flagellar appendages from a biosynthetic and structural point of view

    IgA in the horse: cloning of equine polymeric Ig receptor and J chain and characterization of recombinant forms of equine IgA

    Get PDF
    As in other mammals, immunoglobulin A (IgA) in the horse has a key role in immune defense. To better dissect equine IgA function, we isolated complementary DNA (cDNA) clones for equine J chain and polymeric Ig receptor (pIgR). When coexpressed with equine IgA, equine J chain promoted efficient IgA polymerization. A truncated version of equine pIgR, equivalent to secretory component, bound with nanomolar affinity to recombinant equine and human dimeric IgA but not with monomeric IgA from either species. Searches of the equine genome localized equine J chain and pIgR to chromosomes 3 and 5, respectively, with J chain and pIgR coding sequence distributed across 4 and 11 exons, respectively. Comparisons of transcriptional regulatory sequences suggest that horse and human pIgR expression is controlled through common regulatory mechanisms that are less conserved in rodents. These studies pave the way for full dissection of equine IgA function and open up possibilities for immune-based treatment of equine diseases

    letters

    No full text
    corecore