89 research outputs found
Exenatide Improves Glucose Homeostasis and Prolongs Survival in a Murine Model of Dilated Cardiomyopathy
There is growing awareness of secondary insulin resistance and alterations in myocardial glucose utilization in congestive heart failure. Whether therapies that directly target these changes would be beneficial is unclear. We previously demonstrated that acute blockade of the insulin responsive facilitative glucose transporter GLUT4 precipitates acute decompensated heart failure in mice with advanced dilated cardiomyopathy. Our current objective was to determine whether pharmacologic enhancement of insulin sensitivity and myocardial glucose uptake preserves cardiac function and survival in the setting of primary heart failure.The GLP-1 agonist exenatide was administered twice daily to a murine model of dilated cardiomyopathy (TG9) starting at 56 days of life. TG9 mice develop congestive heart failure and secondary insulin resistance in a highly predictable manner with death by 12 weeks of age. Glucose homeostasis was assessed by measuring glucose tolerance at 8 and 10 weeks and tissue 2-deoxyglucose uptake at 75 days. Exenatide treatment improved glucose tolerance, myocardial GLUT4 expression and 2-deoxyglucose uptake, cardiac contractility, and survival over control vehicle-treated TG9 mice. Phosphorylation of AMP kinase and AKT was also increased in exenatide-treated animals. Total myocardial GLUT1 levels were not different between groups. Exenatide also abrogated the detrimental effect of the GLUT4 antagonist ritonavir on survival in TG9 mice.In heart failure secondary insulin resistance is maladaptive and myocardial glucose uptake is suboptimal. An incretin-based therapy, which addresses these changes, appears beneficial
Cardiac Myosin Binding Protein C and MAP-Kinase Activating Death Domain-Containing Gene Polymorphisms and Diastolic Heart Failure
OBJECTIVE: Myosin binding protein C (MYBPC3) plays a role in ventricular relaxation. The aim of the study was to investigate the association between cardiac myosin binding protein C (MYBPC3) gene polymorphisms and diastolic heart failure (DHF) in a human case-control study. METHODS: A total of 352 participants of 1752 consecutive patients from the National Taiwan University Hospital and its affiliated hospital were enrolled. 176 patients diagnosed with DHF confirmed by echocardiography were recruited. Controls were matched 1-to-1 by age, sex, hypertension, diabetes, renal function and medication use. We genotyped 12 single nucleotide polymorphisms (SNPs) according to HapMap Han Chinese Beijing databank across a 40 kb genetic region containing the MYBPC3 gene and the neighboring DNA sequences to capture 100% of haplotype variance in all SNPs with minor allele frequencies ≥ 5%. We also analyzed associations of these tagging SNPs and haplotypes with DHF and linkage disequilibrium (LD) structure of the MYBPC3 gene. RESULTS: In a single locus analysis, SNP rs2290149 was associated with DHF (allele-specific p = 0.004; permuted p = 0.031). The SNP with a minor allele frequency of 9.4%, had an odds ratio 2.14 (95% CI 1.25-3.66; p = 0.004) for the additive model and 2.06 for the autosomal dominant model (GG+GA : AA, 95% CI 1.17-3.63; p = 0.013), corresponding to a population attributable risk fraction of 12.02%. The haplotypes in a LD block of rs2290149 (C-C-G-C) was also significantly associated with DHF (odds ratio 2.10 (1.53-2.89); permuted p = 0.029). CONCLUSIONS: We identified a SNP (rs2290149) among the tagging SNP set that was significantly associated with early DHF in a Chinese population
Efflux Protein Expression in Human Stem Cell-Derived Retinal Pigment Epithelial Cells
Retinal pigment epithelial (RPE) cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP), the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC) and RPE derived from the hESC (hESC-RPE). Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE -derived diseases, drug testing and targeted drug therapy
Targeting the NG2/CSPG4 Proteoglycan Retards Tumour Growth and Angiogenesis in Preclinical Models of GBM and Melanoma
Aberrant expression of the progenitor marker Neuron-glia 2 (NG2/CSPG4) or melanoma proteoglycan on cancer cells and angiogenic vasculature is associated with an aggressive disease course in several malignancies including glioblastoma multiforme (GBM) and melanoma. Thus, we investigated the mechanism of NG2 mediated malignant progression and its potential as a therapeutic target in clinically relevant GBM and melanoma animal models. Xenografting NG2 overexpressing GBM cell lines resulted in increased growth rate, angiogenesis and vascular permeability compared to control, NG2 negative tumours. The effect of abrogating NG2 function was investigated after intracerebral delivery of lentivirally encoded shRNAs targeting NG2 in patient GBM xenografts as well as in established subcutaneous A375 melanoma tumours. NG2 knockdown reduced melanoma proliferation and increased apoptosis and necrosis. Targeting NG2 in two heterogeneous GBM xenografts significantly reduced tumour growth and oedema levels, angiogenesis and normalised vascular function. Vascular normalisation resulted in increased tumour invasion and decreased apoptosis and necrosis. We conclude that NG2 promotes tumour progression by multiple mechanisms and represents an amenable target for cancer molecular therapy
Neuronal MicroRNA Deregulation in Response to Alzheimer's Disease Amyloid-β
Normal brain development and function depends on microRNA (miRNA) networks to fine tune the balance between the transcriptome and proteome of the cell. These small non-coding RNA regulators are highly enriched in brain where they play key roles in neuronal development, plasticity and disease. In neurodegenerative disorders such as Alzheimer's disease (AD), brain miRNA profiles are altered; thus miRNA dysfunction could be both a cause and a consequence of disease. Our study dissects the complexity of human AD pathology, and addresses the hypothesis that amyloid-β (Aβ) itself, a known causative factor of AD, causes neuronal miRNA deregulation, which could contribute to the pathomechanisms of AD. We used sensitive TaqMan low density miRNA arrays (TLDA) on murine primary hippocampal cultures to show that about half of all miRNAs tested were down-regulated in response to Aβ peptides. Time-course assays of neuronal Aβ treatments show that Aβ is in fact a powerful regulator of miRNA levels as the response of certain mature miRNAs is extremely rapid. Bioinformatic analysis predicts that the deregulated miRNAs are likely to affect target genes present in prominent neuronal pathways known to be disrupted in AD. Remarkably, we also found that the miRNA deregulation in hippocampal cultures was paralleled in vivo by a deregulation in the hippocampus of Aβ42-depositing APP23 mice, at the onset of Aβ plaque formation. In addition, the miRNA deregulation in hippocampal cultures and APP23 hippocampus overlaps with those obtained in human AD studies. Taken together, our findings suggest that neuronal miRNA deregulation in response to an insult by Aβ may be an important factor contributing to the cascade of events leading to AD
- …