31 research outputs found

    Ruminal acidosis and the rapid onset of ruminal parakeratosis in a mature dairy cow: a case report

    Get PDF
    A mature dairy cow was transitioned from a high forage (100% forage) to a high-grain (79% grain) diet over seven days. Continuous ruminal pH recordings were utilized to diagnose the severity of ruminal acidosis. Additionally, blood and rumen papillae biopsies were collected to describe the structural and functional adaptations of the rumen epithelium. On the final day of the grain challenge, the daily mean ruminal pH was 5.41 ± 0.09 with a minimum of 4.89 and a maximum of 6.31. Ruminal pH was under 5.0 for 130 minutes (2.17 hours) which is characterized as the acute form of ruminal acidosis in cattle. The grain challenge increased blood beta-hydroxybutyrate by 1.8 times and rumen papillae mRNA expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase by 1.6 times. Ultrastructural and histological adaptations of the rumen epithelium were imaged by scanning electron and light microscopy. Rumen papillae from the high grain diet displayed extensive sloughing of the stratum corneum and compromised cell adhesion as large gaps were apparent between cells throughout the strata. This case report represents a rare documentation of how the rumen epithelium alters its function and structure during the initial stage of acute acidosis

    Malonyl-CoA mediates leptin hypothalamic control of feeding independent of inhibition of CPT-1a

    No full text
    Hypothalamic fatty acid metabolism is involved in central nervous system controls of feeding and energy balance. Malonyl-CoA, an intermediate of fatty acid biosynthesis, is emerging as a significant player in these processes. Notably, hypothalamic malonyl-CoA has been implicated in leptin's feeding effect. Leptin treatment increases malonyl- CoA level in the hypothalamic arcuate nucleus (Arc), and this increase is required for leptin-induced decrease in food intake. However, the intracellular downstream mediators of malonyl-CoA's feeding effect have not been identified. A primary biochemical action of malonyl- CoA is the inhibition of the acyltransferase activity of carnitine palmitoyltransferase-1 (CPT-1). In the hypothalamus, the predominant isoform of CPT-1 that possesses the acyltransferase activity is CPT-1 liver type (CPT-1a). To address the role of CPT-1a in malonyl- CoA's anorectic action, we used a recombinant adenovirus expressing a mutant CPT-1a that is insensitive to malonyl-CoA inhibition. We show that Arc overexpression of the mutant CPT-1a blocked the malonyl-CoA-mediated inhibition of CPT-1 activity. However, the overexpression of this mutant did not affect the anorectic actions of leptin or central cerulenin for which an increase in Arc malonyl-CoA level is also required. Thus, CPT-1a does not appear to be involved inthe malonyl-CoA's anorectic actions induced by leptin. Furthermore, long-chain fatty acyl-CoAs, substrates of CPT-1a, dissociate from malonyl-CoA's actions in the Arc under different feeding states. Together, our results suggest that Arc intracellular mechanisms of malonyl-CoA's anorectic actions induced by leptin are independent of CPT-1a. The data suggest that target(s), rather than CPT-1a, mediates malonyl-CoA action on feeding. © 2011 the American Physiological Society.link_to_OA_fulltex
    corecore