53 research outputs found

    The atypical anxiolytic drug, tofisopam, selectively blocks phosphodiesterase isoenzymes and is active in the mouse model of negative symptoms of psychosis

    Get PDF
    Tofisopam is a member of the 2,3-benzodiazepine compound family which is marketed for the treatment of anxiety in some European countries. In contrast to classical 1,4-benzodiazepines, the compound does not bind to the benzodiazepine binding site of the γ-aminobutyric acid receptor and its psychopharmacological profile differs from such compounds. In addition to anxiolytic properties, antipsychotic effects are reported. We now show that tofisopam, 50 mg/kg intraperitoneally (i.p.), administered in parallel to repeated doses of dizocilpine 0.2 mg/kg i.p. can ameliorate dizocilpine-induced prolongation of immobility, which is considered to be a model of negative symptoms of psychosis. We further show that tofisopam acts as an isoenzyme-selective inhibitor of phosphodiesterases (PDEs) with highest affinity to PDE-4A1 (0.42 μM) followed by PDE-10A1 (0.92 μM), PDE-3 (1.98 μM) and PDE-2A3 (2.11 μM). The data indicate that tofisopam is an interesting candidate for the adjuvant treatment of psychosis with focus on negative symptoms. Combined partial inhibition of PDE-4 and PDE-10 as well as PDE-2 may be the underlying mechanism to this activity. Due to the good safety profile of tofisopam as evident from long-term use of this agent in patients, it may be concluded that dual or triple inhibition of PDE isoenzymes with additive or synergistic effects may be an interesting approach to pharmacological activity, resulting in active compounds with beneficial safety profile. Dose-limiting side effects such as emesis induced by selective inhibition of PDE-4 may be prevented by such strategies

    Cyclic AMP Control Measured in Two Compartments in HEK293 Cells: Phosphodiesterase KM Is More Important than Phosphodiesterase Localization

    Get PDF
    The intracellular second messenger cyclic AMP (cAMP) is degraded by phosphodiesterases (PDE). The knowledge of individual families and subtypes of PDEs is considerable, but how the different PDEs collaborate in the cell to control a cAMP signal is still not fully understood. In order to investigate compartmentalized cAMP signaling, we have generated a membrane-targeted variant of the cAMP Bioluminiscence Resonance Energy Transfer (BRET) sensor CAMYEL and have compared intracellular cAMP measurements with it to measurements with the cytosolic BRET sensor CAMYEL in HEK293 cells. With these sensors we observed a slightly higher cAMP response to adenylyl cyclase activation at the plasma membrane compared to the cytosol, which is in accordance with earlier results from Fluorescence Resonance Energy Transfer (FRET) sensors. We have analyzed PDE activity in fractionated lysates from HEK293 cells using selective PDE inhibitors and have identified PDE3 and PDE10A as the major membrane-bound PDEs and PDE4 as the major cytosolic PDE. Inhibition of membrane-bound or cytosolic PDEs can potentiate the cAMP response to adenylyl cyclase activation, but we see no significant difference between the potentiation of the cAMP response at the plasma membrane and in cytosol when membrane-bound and cytosolic PDEs are inhibited. When different levels of stimulation were tested, we found that PDEs 3 and 10 are mainly responsible for cAMP degradation at low intracellular cAMP concentrations, whereas PDE4 is more important for control of cAMP at higher concentrations

    Selective phosphodiesterase inhibitors: a promising target for cognition enhancement

    Get PDF
    # The Author(s) 2008. This article is published with open access at Springerlink.com Rationale One of the major complaints most people face during aging is an impairment in cognitive functioning. This has a negative impact on the quality of daily life and is even more prominent in patients suffering from neurodegenerative and psychiatric disorders including Alzheimer’s disease, schizophrenia, and depression. So far, the majority of cognition enhancers are generally targeting one particular neurotransmitter system. However, recently phosphodiesterases (PDEs) have gained increased attention as a potential new target for cognition enhancement. Inhibition of PDEs increases the intracellular availability of the second messengers cGMP and/or cAMP. Objective The aim of this review was to provide an overvie
    corecore