17 research outputs found

    Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group

    Full text link
    We prove geometric LpL^p versions of Hardy's inequality for the sub-elliptic Laplacian on convex domains Ω\Omega in the Heisenberg group Hn\mathbb{H}^n, where convex is meant in the Euclidean sense. When p=2p=2 and Ω\Omega is the half-space given by ⟨ξ,ν⟩>d\langle \xi, \nu\rangle > d this generalizes an inequality previously obtained by Luan and Yang. For such pp and Ω\Omega the inequality is sharp and takes the form \begin{equation} \int_\Omega |\nabla_{\mathbb{H}^n}u|^2 \, d\xi \geq \frac{1}{4}\int_{\Omega} \sum_{i=1}^n\frac{\langle X_i(\xi), \nu\rangle^2+\langle Y_i(\xi), \nu\rangle^2}{\textrm{dist}(\xi, \partial \Omega)^2}|u|^2\, d\xi, \end{equation} where dist( ⋅ ,∂Ω)\textrm{dist}(\, \cdot\,, \partial \Omega) denotes the Euclidean distance from ∂Ω\partial \Omega.Comment: 14 page
    corecore