18 research outputs found

    Genome-Wide Analysis of Effectors of Peroxisome Biogenesis

    Get PDF
    Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for β-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function

    A disulphide bond in the E2 enzyme Pex4p modulates ubiquitin-conjugating activity

    Get PDF
    The ubiquitin-conjugating enzyme Pex4p together with its binding partner, the peroxisomal membrane protein Pex22p, co-ordinates cysteine-dependent ubiquitination of the cycling receptor protein Pex5p. Unusually for an ubiquitin-conjugating enzyme, Saccharomyces cerevisiae Pex4p can form a disulphide bond between the cysteine residues at positions 105 and 146. We found that mutating the disulphide forming cysteine residues in Pex4p to serines does not disturb the secondary structure of the protein but does reduce the in vitro activity of Pex4p. From the crystal structure of Pex4p C105S, C146S in complex with the soluble domain of Pex22p, we observe a narrowing of the active site cleft, caused by loss of the disulphide bond. This modification of the active site microenvironment is likely to restrict access of ubiquitin to the active site cysteine, modulating Pex4p activity. Finally, based on sequence and structural alignments, we have identified other ubiquitin-conjugating enzymes that may contain disulphide bonds

    SRF regulates Bcl-2 expression and promotes cell survival during murine embryonic development

    No full text
    The transcription factor serum response factor (SRF) controls the expression of genes involved in cellular proliferation and differentiation. Interestingly, SRF also promotes cell survival by regulating the expression of antiapoptotic genes. In in vitro differentiating murine embryonic stem (ES) cells, SRF deficiency leads to increased apoptosis. Loss of SRF correlates with impaired expression of the antiapoptotic Bcl-2 and Bcl-xl genes. SRF binds the Bcl-2 promoter in vivo and activates Bcl-2 transcription. Reconstituting Bcl-2 in Srf(−/−) ES cells rescues these cells from apoptosis, demonstrating that SRF-dependent Bcl-2 expression is critical for ES cell survival. At the multicellular level, SRF deficiency leads to impaired cavitation and reduced Bcl-2 expression in embryoid bodies (EBs) and inappropriate apoptosis in both EBs and pregastrulation mouse embryos. Thus, our data from genetic and cellular studies uncover SRF-regulated Bcl-2 expression as a novel mechanism that is important for cell survival during early murine embryogenesis
    corecore