15 research outputs found

    VE-statin/egfl7 Expression in Endothelial Cells Is Regulated by a Distal Enhancer and a Proximal Promoter under the Direct Control of Erg and GATA-2

    Get PDF
    Angiogenesis is the process by which new blood vessels arise from existing ones by the budding out of endothelial cell capillaries from the luminal side of blood vessels. Blood vessel formation is essential for organ development during embryogenesis and is associated with several physiological and pathological processes, such as wound healing and tumor development. The VE-statin/egfl7 gene is specifically expressed in endothelial cells during embryonic development and in the adult. We studied here the regulatory mechanisms that control this tissue-specific expression. RT-qPCR analyses showed that the specificity of expression of VE-statin/egfl7 in endothelial cells is not shared with its closest neighbor genes notch1 and agpat2 on the mouse chromosome 2. Chromatin-immunoprecipitation analysis of histone modifications at the VE-statin/egfl7 locus showed that the chromatin is specifically opened in endothelial cells, but not in fibroblasts at the transcription start sites. A 13 kb genomic fragment of promoter was cloned and analyzed by gene reporter assays which showed that two conserved regions are important for the specific expression of VE-statin/egfl7 in endothelial cells; a −8409/−7563 enhancer and the −252/+38 region encompassing the exon-1b transcription start site. The latter contains essential GATA and ETS-binding sites, as assessed by linker-scanning analysis and site-directed mutagenesis. An analysis of expression of the ETS and GATA transcription factors showed that Erg, Fli-1 and GATA-2 are the most highly expressed factors in endothelial cells. Erg and GATA-2 directly control the expression of the endogenous VE-statin/egfl7 while Fli-1 probably exerts an indirect control, as assessed by RNA interference and chromatin immunoprecipitation. This first detailed analysis of the mechanisms that govern the expression of the VE-statin/egfl7 gene in endothelial cells pinpoints the specific importance of ETS and GATA factors in the specific regulation of genes in this cell lineage

    Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials

    No full text
    Substantial COVID-19 research investment has been allocated to randomized clinical trials (RCTs) on hydroxychloroquine/chloroquine, which currently face recruitment challenges or early discontinuation. We aim to estimate the effects of hydroxychloroquine and chloroquine on survival in COVID-19 from all currently available RCT evidence, published and unpublished. We present a rapid meta-analysis of ongoing, completed, or discontinued RCTs on hydroxychloroquine or chloroquine treatment for any COVID-19 patients (protocol: https://osf.io/QESV4/). We systematically identified unpublished RCTs (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, Cochrane COVID-registry up to June 11, 2020), and published RCTs (PubMed, medRxiv and bioRxiv up to October 16, 2020). All-cause mortality has been extracted (publications/preprints) or requested from investigators and combined in random-effects meta-analyses, calculating odds ratios (ORs) with 95% confidence intervals (CIs), separately for hydroxychloroquine and chloroquine. Prespecified subgroup analyses include patient setting, diagnostic confirmation, control type, and publication status. Sixty-three trials were potentially eligible. We included 14 unpublished trials (1308 patients) and 14 publications/preprints (9011 patients). Results for hydroxychloroquine are dominated by RECOVERY and WHO SOLIDARITY, two highly pragmatic trials, which employed relatively high doses and included 4716 and 1853 patients, respectively (67% of the total sample size). The combined OR on all-cause mortality for hydroxychloroquine is 1.11 (95% CI: 1.02, 1.20; I² = 0%; 26 trials; 10,012 patients) and for chloroquine 1.77 (95%CI: 0.15, 21.13, I² = 0%; 4 trials; 307 patients). We identified no subgroup effects. We found that treatment with hydroxychloroquine is associated with increased mortality in COVID-19 patients, and there is no benefit of chloroquine. Findings have unclear generalizability to outpatients, children, pregnant women, and people with comorbidities
    corecore