31 research outputs found

    Development of a Humanized HLA-A2.1/DP4 Transgenic Mouse Model and the Use of This Model to Map HLA-DP4-Restricted Epitopes of HBV Envelope Protein

    Get PDF
    A new homozygous humanized transgenic mouse strain, HLA-A2.1+/+HLA-DP4+/+ hCD4+/+mCD4−/−IAÎČ−/−ÎČ2m−/− (HLA-A2/DP4), was obtained by crossing the previously characterized HLA-A2+/+ÎČ2m−/− (A2) mouse and our previously created HLA-DP4+/+ hCD4+/+mCD4−/−IAÎČ−/− (DP4) mouse. We confirmed that the transgenes (HLA-A2, HLA-DP4, hCD4) inherited from the parental A2 and DP4 mice are functional in the HLA-A2/DP4 mice. After immunizing HLA-A2/DP4 mice with a hepatitis B DNA vaccine, hepatitis B virus-specific antibodies, HLA-A2-restricted and HLA-DP4-restricted responses were observed to be similar to those in naturally infected humans. Therefore, the present study demonstrated that HLA-A2/DP4 transgenic mice can faithfully mimic human cellular responses. Furthermore, we reported four new HLA-DP4-restricted epitopes derived from HBsAg that were identified in both vaccinated HLA-A2/DP4 mice and HLA-DP4-positive human individuals. The HLA-A2/DP4 mouse model is a promising preclinical animal model carrying alleles present to more than a quarter of the human population. This model should facilitate the identification of novel HLA-A2- and HLA-DP4-restricted epitopes and vaccine development as well as the characterization of HLA-DP4-restricted responses against infection in humans

    Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study

    Get PDF
    INTRODUCTION: Mammographically dense breast tissue is a strong predictor of breast cancer risk, and is influenced by both mitogens and mutagens. One enzyme that is able to affect both the mitogenic and mutagenic characteristics of estrogens is cytochrome P450 1A2 (CYP1A2), which is principally responsible for the metabolism of 17ÎČ-estradiol. METHODS: In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity, malondialdehyde (MDA) levels, and mammographic density. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Levels of serum and urinary MDA, and MDA–deoxyguanosine adducts in DNA were measured. Mammograms were digitized and measured using a computer-assisted method. RESULTS: CYP1A2 activity in postmenopausal women, but not in premenopausal women, was positively associated with mammographic density, suggesting that increased CYP1A2 activity after the menopause is a risk factor for breast cancer. In premenopausal women, but not in postmenopausal women, CYP1A2 activity was positively associated with serum and urinary MDA levels; there was also some evidence that CYP1A2 activity was more positively associated with percentage breast density when MDA levels were high, and more negatively associated with percentage breast density when MDA levels were low. CONCLUSION: These findings provide further evidence that variation in the activity level of enzymes involved in estrogen metabolism is related to levels of mammographic density and potentially to breast cancer risk

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Fungal G-protein-coupled receptors::mediators of pathogenesis and targets for disease control

    Get PDF
    G-protein signalling pathways are involved in sensing the environment, enabling fungi to coordinate cell function, metabolism and development with their surroundings, thereby promoting their survival, propagation and virulence. G-protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in fungi. Despite the apparent importance of GPCR signalling to fungal biology and virulence, relatively few GPCR–G-protein interactions, and even fewer receptor-binding ligands, have been identified. Approximately 40% of current pharmaceuticals target human GPCRs, due to their cell surface location and central role in cell signalling. Fungal GPCRs do not belong to any of the mammalian receptor classes, making them druggable targets for antifungal development. This Review Article evaluates developments in our understanding of fungal GPCR-mediated signalling, while substantiating the rationale for considering these receptors as potential antifungal targets. The need for insights into the structure–function relationship of receptor–ligand interactions is highlighted, which could facilitate the development of receptor-interfering compounds that could be used in disease control

    Allocating a fixed cost across decision-making units with undesirable outputs:A bargaining game approach

    No full text
    Allocating a fixed cost among a set of peer decision-making units (DMUs) is one of the most important applications of data envelopment analysis. However, almost all existing studies have addressed the fixed cost allocation (FCA) problem within a traditional framework while ignoring the existence of undesirable outputs. Undesirable outputs are neither scarce in various production activities in real world applications nor trivial in efficiency evaluation and subsequent decision making. Motivated by this observation, this article attempts to explicitly extend the traditional FCA problem to situations in which DMUs are necessarily involved with undesirable outputs. To this end, we first investigate the efficiency evaluation of DMUs considering undesirable outputs based on the joint weak disposability assumption. Then, flexible FCA schemes are considered to revisit the efficiency evaluation process. The results show that feasible allocation schemes exist such that all DMUs can be simultaneously efficient. Furthermore, we define the comprehensive satisfaction degree and develop a satisfaction degree bargaining game approach to determine a unique FCA scheme. Finally, the proposed approach is tested with an empirical study of banking activities based on real conditions
    corecore