36 research outputs found

    Regulatory T Cells Phenotype in Different Clinical Forms of Chagas' Disease

    Get PDF
    CD25High CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25HighCD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25High CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite infections

    Protective Human Leucocyte Antigen Haplotype, HLA-DRB1*01-B*14, against Chronic Chagas Disease in Bolivia

    Get PDF
    Chronic Chagas disease consists of four different forms categorized on the basis of their clinical manifestations, namely; cardiac, digestive, cardiodigestive and indeterminate. In Latin America, there are 8–10 million seropositive persons who are at risk of, or have already developed serious clinical complications and who have limited access to effective treatment. The cardiac and digestive forms are characterized by tissue damage caused by persistent infection of Trypanosoma cruzi and are thought to be modulated by host immunity. In our large scale screening for chronic Chagas disease in Santa Cruz, Bolivia, hearts and colons of 229 seropositive patients were examined. We found 31.4% of patients had abnormal electrocardiograms (ECGs), 15.7% presented with megacolon, 5.2% had a combination of abnormal ECG and megacolon, and 58.1% were of indeterminate status. Previously, we attempted to ascertain whether parasite genetic polymorphism might account for the differences in clinical manefestations, by analyzing parasite DNA taken from the same study group (with the addition of a further 62 megacolon post-operational patients). We found no relationships between parasite lineages and clinical disease form. The present study reveals that host HLA polymorphisms associate with clinical manifestations of Chagas

    Profile of Central and Effector Memory T Cells in the Progression of Chronic Human Chagas Disease

    Get PDF
    Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi that affects approximately 11 million people in Latin America. The involvement of the host's immune response on the development of severe forms of Chagas disease has not been fully elucidated. Studies on the immune response against T. cruzi infection show that the immunoregulatory mechanisms are necessary to prevent the deleterious effect of excessive immune response stimulation and consequently the fatal outcome of the disease. A recall response against parasite antigens observed in in vitro peripheral blood cell culture clearly demonstrates that memory response is generated during infection. Memory T cells are heterogeneous and differ in both the ability to migrate and exert their effector function. This heterogeneity is reflected in the definition of central (TCM) and effector memory (TEM) T cells. Our results suggest that a balance between regulatory and effectors T cells may be important for the progression and development of the disease. Furthermore, the high percentage of central memory CD4+ T cells in indeterminate patients after stimulation suggests that these cells may modulate host's inflammatory response by controlling cell migration to tissues and their effector role during chronic phase of the disease

    Modelling the risk of mortality of Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) exposed to different turbidity conditions

    No full text
    The provision of sediment in rivers, due to erosion processes that occur in the environment, consists of a major source of pollution and alteration of the physicochemical conditions of water resources. In addition, the increase in water turbidity may cause siltation, dramatically impacting aquatic communities. Specifically considering the bivalve Corbicula fluminea (Müller, 1774), the aim of this study was to analyse the effect of exposure to different turbidity conditions of sediments, as a risk factor for the animals. For this purpose, a docking device was designed to ensure water circulation in a closed system and to maintain the desired levels of turbidity. Although C. fluminea can generally tolerate environmental changes in aquatic systems, an intolerance to high turbidity levels was experimentally observed, expressed by the mortality rate of the animals when exposed to conditions above 150 nephelometric turbidity units (NTU). This value was similar to the one recorded at study sites in the rivers Pardo (Serrana-SP-Brazil) and Mogi Guaçu (Porto Ferreira-SP-Brazil) during the rainy season. Using a logistic regression model, the experimental results were analysed and the observed mortality rates indicate that the exposure of the animals to turbidity levels above 150 nephelometric turbidity units (NTU), for periods longer than 120 hours, may be considered a probable cause of mortality for the species
    corecore