35,371 research outputs found
Strain-Modified RKKY Interaction in Carbon Nanotubes
For low-dimensional metallic structures, such as nanotubes, the exchange
coupling between localized magnetic dopants is predicted to decay slowly with
separation. The long-range character of this interaction plays a significant
role in determining the magnetic order of the system. It has previously been
shown that the interaction range depends on the conformation of the magnetic
dopants in both graphene and nanotubes. Here we examine the RKKY interaction in
carbon nanotubes in the presence of uniaxial strain for a range of different
impurity configurations. We show that strain is capable of amplifying or
attenuating the RKKY interaction, significantly increasing certain interaction
ranges, and acting as a switch: effectively turning on or off the interaction.
We argue that uniaxial strain can be employed to significantly manipulate
magnetic interactions in carbon nanotubes, allowing an interplay between
mechanical and magnetic properties in future spintronic devices. We also
examine the dimensional relationship between graphene and nanotubes with
regards to the decay rate of the RKKY interaction.Comment: 7 pages, 6 figures, submitte
Exponential behavior of the interlayer exchange coupling across non-magnetic metallic superlattices
It is shown that the coupling between magnetic layers separated by
non-magnetic metallic superlattices can decay exponentially as a function of
the spacer thickness , as opposed to the usual decay. This effect
is due to the lack of constructive contributions to the coupling from extended
states across the spacer. The exponential behavior is obtained by properly
choosing the distinct metals and the superlattice unit cell composition.Comment: To appear in Phys. Rev.
Impurity segregation in graphene nanoribbons
The electronic properties of low-dimensional materials can be engineered by
doping, but in the case of graphene nanoribbons (GNR) the proximity of two
symmetry-breaking edges introduces an additional dependence on the location of
an impurity across the width of the ribbon. This introduces energetically
favorable locations for impurities, leading to a degree of spatial segregation
in the impurity concentration. We develop a simple model to calculate the
change in energy of a GNR system with an arbitrary impurity as that impurity is
moved across the ribbon and validate its findings by comparison with ab initio
calculations. Although our results agree with previous works predicting the
dominance of edge disorder in GNR, we argue that the distribution of adsorbed
impurities across a ribbon may be controllable by external factors, namely an
applied electric field. We propose that this control over impurity segregation
may allow manipulation and fine-tuning of the magnetic and transport properties
of GNRs.Comment: 5 pages, 4 figures, submitte
Two-component mixture of charged particles confined in a channel: melting
The melting of a binary system of charged particles confined in a {\it
quasi}-one-dimensional parabolic channel is studied through Monte Carlo
simulations. At zero temperature the particles are ordered in parallel chains.
The melting is anisotropic and different melting temperatures are obtained
according to the spatial direction, and the different types of particles
present in the system. Melting is very different for the single-, two- and
four-chain configurations. A temperature induced structural phase transition is
found between two different four chain ordered states which is absent in the
mono-disperse system. In the mixed regime, where the two types of particles are
only slightly different, melting is almost isotropic and a thermally induced
homogeneous distribution of the distinct types of charges is observed.Comment: To appear in Journal of Physics: condensed matter ; (13 pages, 12
figures
A computationally efficient method for calculating the maximum conductance of disordered networks: Application to 1-dimensional conductors
Random networks of carbon nanotubes and metallic nanowires have shown to be
very useful in the production of transparent, conducting films. The electronic
transport on the film depends considerably on the network properties, and on
the inter-wire coupling. Here we present a simple, computationally efficient
method for the calculation of conductance on random nanostructured networks.
The method is implemented on metallic nanowire networks, which are described
within a single-orbital tight binding Hamiltonian, and the conductance is
calculated with the Kubo formula. We show how the network conductance depends
on the average number of connections per wire, and on the number of wires
connected to the electrodes. We also show the effect of the inter-/intra-wire
hopping ratio on the conductance through the network. Furthermore, we argue
that this type of calculation is easily extendable to account for the upper
conductivity of realistic films spanned by tunneling networks. When compared to
experimental measurements, this quantity provides a clear indication of how
much room is available for improving the film conductivity.Comment: 7 pages, 5 figure
- …