35,371 research outputs found

    Strain-Modified RKKY Interaction in Carbon Nanotubes

    Get PDF
    For low-dimensional metallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the RKKY interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon nanotubes, allowing an interplay between mechanical and magnetic properties in future spintronic devices. We also examine the dimensional relationship between graphene and nanotubes with regards to the decay rate of the RKKY interaction.Comment: 7 pages, 6 figures, submitte

    Exponential behavior of the interlayer exchange coupling across non-magnetic metallic superlattices

    Full text link
    It is shown that the coupling between magnetic layers separated by non-magnetic metallic superlattices can decay exponentially as a function of the spacer thickness NN, as opposed to the usual N−2N^{-2} decay. This effect is due to the lack of constructive contributions to the coupling from extended states across the spacer. The exponential behavior is obtained by properly choosing the distinct metals and the superlattice unit cell composition.Comment: To appear in Phys. Rev.

    Impurity segregation in graphene nanoribbons

    Full text link
    The electronic properties of low-dimensional materials can be engineered by doping, but in the case of graphene nanoribbons (GNR) the proximity of two symmetry-breaking edges introduces an additional dependence on the location of an impurity across the width of the ribbon. This introduces energetically favorable locations for impurities, leading to a degree of spatial segregation in the impurity concentration. We develop a simple model to calculate the change in energy of a GNR system with an arbitrary impurity as that impurity is moved across the ribbon and validate its findings by comparison with ab initio calculations. Although our results agree with previous works predicting the dominance of edge disorder in GNR, we argue that the distribution of adsorbed impurities across a ribbon may be controllable by external factors, namely an applied electric field. We propose that this control over impurity segregation may allow manipulation and fine-tuning of the magnetic and transport properties of GNRs.Comment: 5 pages, 4 figures, submitte

    Two-component mixture of charged particles confined in a channel: melting

    Full text link
    The melting of a binary system of charged particles confined in a {\it quasi}-one-dimensional parabolic channel is studied through Monte Carlo simulations. At zero temperature the particles are ordered in parallel chains. The melting is anisotropic and different melting temperatures are obtained according to the spatial direction, and the different types of particles present in the system. Melting is very different for the single-, two- and four-chain configurations. A temperature induced structural phase transition is found between two different four chain ordered states which is absent in the mono-disperse system. In the mixed regime, where the two types of particles are only slightly different, melting is almost isotropic and a thermally induced homogeneous distribution of the distinct types of charges is observed.Comment: To appear in Journal of Physics: condensed matter ; (13 pages, 12 figures

    A computationally efficient method for calculating the maximum conductance of disordered networks: Application to 1-dimensional conductors

    Full text link
    Random networks of carbon nanotubes and metallic nanowires have shown to be very useful in the production of transparent, conducting films. The electronic transport on the film depends considerably on the network properties, and on the inter-wire coupling. Here we present a simple, computationally efficient method for the calculation of conductance on random nanostructured networks. The method is implemented on metallic nanowire networks, which are described within a single-orbital tight binding Hamiltonian, and the conductance is calculated with the Kubo formula. We show how the network conductance depends on the average number of connections per wire, and on the number of wires connected to the electrodes. We also show the effect of the inter-/intra-wire hopping ratio on the conductance through the network. Furthermore, we argue that this type of calculation is easily extendable to account for the upper conductivity of realistic films spanned by tunneling networks. When compared to experimental measurements, this quantity provides a clear indication of how much room is available for improving the film conductivity.Comment: 7 pages, 5 figure
    • …
    corecore