38,525 research outputs found

    Exchange coupling between magnetic layers across non-magnetic superlattices

    Full text link
    The oscillation periods of the interlayer exchange coupling are investigated when two magnetic layers are separated by a metallic superlattice of two distinct non-magnetic materials. In spite of the conventional behaviour of the coupling as a function of the spacer thickness, new periods arise when the coupling is looked upon as a function of the number of cells of the superlattice. The new periodicity results from the deformation of the corresponding Fermi surface, which is explicitly related to a few controllable parameters, allowing the oscillation periods to be tuned.Comment: 13 pages; 5 figures; To appear in J. Phys.: Cond. Matte

    Exponential behavior of the interlayer exchange coupling across non-magnetic metallic superlattices

    Full text link
    It is shown that the coupling between magnetic layers separated by non-magnetic metallic superlattices can decay exponentially as a function of the spacer thickness NN, as opposed to the usual N−2N^{-2} decay. This effect is due to the lack of constructive contributions to the coupling from extended states across the spacer. The exponential behavior is obtained by properly choosing the distinct metals and the superlattice unit cell composition.Comment: To appear in Phys. Rev.

    General CPT-even dimension-five nonminimal couplings between fermions and photons yielding EDM and MDM

    Get PDF
    In this letter, we examine a new class of CPT-even nonminimal interactions, between fermions and photons, deprived of higher order derivatives, that yields electric dipole moment (EDM) and magnetic dipole moment (MDM) in the context of the Dirac equation. The couplings are dimension-five CPT-even and Lorentz-violating nonminimal structures, composed of a rank-2 tensor, TμνT_{\mu\nu}, the electromagnetic tensor, and gamma matrices, being addressed in its axial and non-axial Hermitian versions, and also comprising general possibilities. We then use the electron's anomalous magnetic dipole moment and electron electric dipole moment measurements to reach upper bounds of 11 part in 102010^{20} and 102510^{25} (eV )−1^{-1}

    #CHIMoney: Financial interactions, digital cash, capital exchange and mobile money

    Get PDF
    Interactions around money and financial services are a critical part of our lives on and off-line. New technologies and new ways of interacting with these technologies are of huge interest; they enable new business models and ways of making sense of this most important aspect of our everyday lives. At the same time, money is an essential element in HCI research and design. This workshop is intended to bring together researchers and practitioners involved in the design and use of systems that combine digital and new media with monetary and financial interactions to build on an understanding of these technologies and their impacts on users' behaviors. The workshop will focus on social, technical, and economic aspects around everyday user interactions with money and emerging financial technologies and systems

    Maxwell-Chern-Simons vortices in a CPT-odd Lorentz-violating Higgs Electrodynamics

    Get PDF
    We have studied BPS vortices in a CPT-odd and Lorentz-violating Maxwell-Chern-Simons-Higgs (MCSH) electrodynamics attained from the dimensional reduction of the Carroll-Field-Jackiw-Higgs model. The Lorentz-violating parameter induces a pronounced behavior at origin (for the magnetic/electric fields and energy density) which is absent in the MCSH vortices. For some combination of the Lorentz-violating coefficients there always exist a sufficiently large winding number n0n_{0} such that for all % |n|\geq |n_{0}| the magnetic field flips its signal, yielding two well defined regions with opposite magnetic flux. However, the total magnetic flux remains quantized and proportional to the winding number.Comment: Revtex style, 8 page
    • …
    corecore