29,824 research outputs found

    Are Magnetic Wind-Driving Disks Inherently Unstable?

    Full text link
    There have been claims in the literature that accretion disks in which a centrifugally driven wind is the dominant mode of angular momentum transport are inherently unstable. This issue is considered here by applying an equilibrium-curve analysis to the wind-driving, ambipolar diffusion-dominated, magnetic disk model of Wardle & Konigl (1993). The equilibrium solution curves for this class of models typically exhibit two distinct branches. It is argued that only one of these branches represents unstable equilibria and that a real disk/wind system likely corresponds to a stable solution.Comment: 5 pages, 2 figures, to be published in ApJ, vol. 617 (2004 Dec 20). Uses emulateapj.cl

    Instance Space of the Number Partitioning Problem

    Full text link
    Within the replica framework we study analytically the instance space of the number partitioning problem. This classic integer programming problem consists of partitioning a sequence of N positive real numbers \{a_1, a_2,..., a_N} (the instance) into two sets such that the absolute value of the difference of the sums of aja_j over the two sets is minimized. We show that there is an upper bound αcN\alpha_c N to the number of perfect partitions (i.e. partitions for which that difference is zero) and characterize the statistical properties of the instances for which those partitions exist. In particular, in the case that the two sets have the same cardinality (balanced partitions) we find αc=1/2\alpha_c=1/2. Moreover, we show that the disordered model resulting from hte instance space approach can be viewed as a model of replicators where the random interactions are given by the Hebb rule.Comment: 7 page

    Magnetized Accretion-Ejection Structures: 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks

    Full text link
    We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a quasi-stationary state. We present a complete illustration and explanation of the `accretion-ejection' mechanism that leads to jet formation from a magnetized accretion disk. In particular, the magnetic torque inside the disk brakes the matter azimuthally and allows for accretion, while it is responsible for an effective magneto-centrifugal acceleration in the jet. As such, the magnetic field channels the disk angular momentum and powers the jet acceleration and collimation. The jet originates from the inner disk region where equipartition between thermal and magnetic forces is achieved. A hollow, super-fastmagnetosonic shell of dense material is the natural outcome of the inwards advection of a primordial field.Comment: ApJ (in press), 32 pages, Higher quality version available at http://www-laog.obs.ujf-grenoble.fr/~fcass

    Supersymmetric Construction of W-Algebras from Super Toda and Wznw Theories

    Full text link
    A systematic construction of super W-algebras in terms of the WZNW model based on a super Lie algebra is presented. These are shown to be the symmetry structure of the super Toda models, which can be obtained from the WZNW theory by Hamiltonian reduction. A classification, according to the conformal spin defined by an improved energy-momentum tensor, is dicussed in general terms for all super Lie algebras whose simple roots are fermionic . A detailed discussion employing the Dirac bracket structure and an explicit construction of W-algebras for the cases of OSP(1,2)OSP(1,2), OSP(2,2)OSP(2,2) , OSP(3,2)OSP(3,2) and D(2,1∣α)D(2,1 \mid \alpha ) are given. The N=1N=1 and N=2N=2 super conformal algebras are discussed in the pertinent cases.Comment: 24 page

    Generalized Miura Transformations, Two-Boson KP Hierarchies and their Reduction to KDV Hierarchies

    Full text link
    Bracket preserving gauge equivalence is established between several two-boson generated KP type of hierarchies. These KP hierarchies reduce under symplectic reduction (via Dirac constraints) to KdV, mKdV and Schwarzian KdV hierarchies. Under this reduction the gauge equivalence is taking form of the conventional Miura maps between the above KdV type of hierarchies.Comment: 12 pgs., LaTeX, IFT-P/011/93, UICHEP-TH/93-

    Critical temperature of a fully anisotropic three-dimensional Ising model

    Full text link
    The critical temperature of a three-dimensional Ising model on a simple cubic lattice with different coupling strengths along all three spatial directions is calculated via the transfer matrix method and a finite size scaling for L x L oo clusters (L=2 and 3). The results obtained are compared with available calculations. An exact analytical solution is found for the 2 x 2 oo Ising chain with fully anisotropic interactions (arbitrary J_x, J_y and J_z).Comment: 17 pages in tex using preprint.sty for IOP journals, no figure
    • …
    corecore