97 research outputs found

    Bird-termite interactions in Brazil: A review with perspectives for future studies

    Full text link

    Produção cientĂ­fica sobre nutrição no Ăąmbito da Atenção PrimĂĄria Ă  SaĂșde no Brasil: uma revisĂŁo de literatura

    Full text link

    Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2204.12945v2 [hep-ex], https://arxiv.org/abs/2204.12945v2 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-19-014 (CMS Public Pages). Report number: CMS-HIG-19-014, CERN-EP-2022-019.Results are presented from a search for the Higgs boson decay H → ZÎł, where Z → ℓ+ℓ− with ℓ = e or ÎŒ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb^{−1}. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strength ÎŒ, defined as the product of the cross section and the branching fraction [σ(pp → H)B(H → ZÎł)] relative to the standard model prediction, is extracted from a simultaneous fit to the ℓ+ℓ−γ invariant mass distributions in all categories and is found to be ÎŒ = 2.4 ± 0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to σ(pp → H)B(H → ZÎł) = 0.21 ± 0.08 pb. The observed (expected) upper limit at 95% confidence level on ÎŒ is 4.1 (1.8). The ratio of branching fractions B(H → ZÎł)/B(H → γγ) is measured to be 1.5 +0.7−0.6, which agrees with the standard model prediction of 0.69 ± 0.04 at the 1.5 standard deviation level.SCOAP3

    Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2206.09466v2 [hep-ex], https://arxiv.org/abs/2206.09466v2 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at httpS://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-20-013 (CMS Public Pages). Report number: CMS-HIG-20-013, CERN-EP-2022-120.Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016-2018 is used, corresponding to an integrated luminosity of 138 fb^−1. The signal strength modifier ÎŒ, defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be ÎŒ = 0.95 +0.10−0.09. All results are found to be compatible with the standard model within the uncertainties.SCOAP3

    Search for electroweak production of charginos and neutralinos at s\sqrt{s} = 13 TeV in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum

    Get PDF
    Data availability: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in “CMS data preservation, re-use and open access policy”.A preprint version of this article is archived at: arXiv:2205.09597v2 [hep-ex], https://arxiv.org/abs/2205.09597v2 . Comments: Replaced with the published version. Added the journal reference. All the figures and tables, including additional supplementary figures and tables, can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/SUS-21-002 (CMS Public Pages). Report number: CMS-SUS-21-002, CERN-EP-2022-031This Letter presents a search for direct production of charginos and neutralinos via electroweak interactions. The results are based on data from proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb^{-1}. The search considers final states with large missing transverse momentum and pairs of hadronically decaying bosons WW, WZ, and WH, where H is the Higgs boson. These bosons are identified using novel algorithms. No significant excess of events is observed relative to the expectations from the standard model. Limits at the 95% confidence level are placed on the cross section for production of mass-degenerate wino-like supersymmetric particles χ~±1 and χ~02, and mass-degenerate higgsino-like supersymmetric particles χ~±1, χ~02, and χ~03. In the limit of a nearly-massless lightest supersymmetric particle χ~01, wino-like particles with masses up to 870 and 960 GeV are excluded in the cases of χ~02 → Zχ~01 and χ~02 → Hχ~01, respectively, and higgsino-like particles are excluded between 300 and 650 GeV.SCOAP3

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A preprint version of this article is available at arXiv:2210.00043v2 [hep-ex], https://arxiv.org/abs/2210.00043v2 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables, including additional supplementary figures, can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-009 (CMS Public Pages). Report number: CMS-B2G-20-009, CERN-EP-2022-152.Data availability: see: https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-009 .A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016-2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb^{-1}. The search is sensitive to resonances with masses between 1.3 and 6 TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z' and W' resonances with masses below 4.8 TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7 TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb.SCOAP3

    Measurement of the Higgs boson production via vector boson fusion and its decay into bottom quarks in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2308.01253v2 [hep-ex], https://arxiv.org/abs/2308.01253v2 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-22-009 (CMS Public Pages). Report number: CMS-HIG-22-009, CERN-EP-2023-110.A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair (bbÂŻ) is presented using proton-proton collision data recorded by the CMS experiment at s√ = 13 TeV and corresponding to an integrated luminosity of 90.8 fb−1. Treating the gluon-gluon fusion process as a background and constraining its rate to the value expected in the standard model (SM) within uncertainties, the signal strength of the VBF process, defined as the ratio of the observed signal rate to that predicted by the SM, is measured to be ÎŒqqHHbbÂŻ = 1.01 +0.55−0.46. The VBF signal is observed with a significance of 2.4 standard deviations relative to the background prediction, while the expected significance is 2.7 standard deviations. Considering inclusive Higgs boson production and decay into bottom quarks, the signal strength is measured to be ÎŒincl.HbbÂŻ = 0.99 +0.48−0.41, corresponding to an observed (expected) significance of 2.6 (2.9) standard deviations.SCOAP3, STFC; Marie-Curie program and the European Research Council and Horizon 2020 Gran
    • 

    corecore