37,673 research outputs found
Faceted anomalous scaling in the epitaxial growth of semiconductor films
We apply the generic dynamical scaling theory (GDST) to the surfaces of CdTe
polycrystalline films grown in glass substrates. The analysed data were
obtained with a stylus profiler with an estimated resolution lateral resolution
of m. Both real two-point correlation function and power spectrum
analyses were done. We found that the GDST applied to the surface power spectra
foresees faceted morphology in contrast with the self-affine surface indicated
by the local roughness exponent found via the height-height correlation
function. This inconsistency is explained in terms of convolution effects
resulting from the finite size of the probe tip used to scan the surfaces. High
resolution AFM images corroborates the predictions of GDST.Comment: to appear in Europhysics Letter
Modelling of epitaxial film growth with a Ehrlich-Schwoebel barrier dependent on the step height
The formation of mounded surfaces in epitaxial growth is attributed to the
presence of barriers against interlayer diffusion in the terrace edges, known
as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth
using a ES barrier explicitly dependent on the step height. Our model has an
intrinsic topological step barrier even in the absence of an explicit ES
barrier. We show that mounded morphologies can be obtained even for a small
barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma
equation, is observed in absence of an explicit step barrier. The mounded
surfaces are described by a super-roughness dynamical scaling characterized by
locally smooth (faceted) surfaces and a global roughness exponent .
The thin film limit is featured by surfaces with self-assembled
three-dimensional structures having an aspect ratio (height/width) that may
increase or decrease with temperature depending on the strength of step
barrier.Comment: To appear in J. Phys. Cond. Matter; 3 movies as supplementary
materia
- …