30,588 research outputs found
Two-component mixture of charged particles confined in a channel: melting
The melting of a binary system of charged particles confined in a {\it
quasi}-one-dimensional parabolic channel is studied through Monte Carlo
simulations. At zero temperature the particles are ordered in parallel chains.
The melting is anisotropic and different melting temperatures are obtained
according to the spatial direction, and the different types of particles
present in the system. Melting is very different for the single-, two- and
four-chain configurations. A temperature induced structural phase transition is
found between two different four chain ordered states which is absent in the
mono-disperse system. In the mixed regime, where the two types of particles are
only slightly different, melting is almost isotropic and a thermally induced
homogeneous distribution of the distinct types of charges is observed.Comment: To appear in Journal of Physics: condensed matter ; (13 pages, 12
figures
Magnetization profile for impurities in graphene nanoribbons
The magnetic properties of graphene-related materials and in particular the
spin-polarised edge states predicted for pristine graphene nanoribbons (GNRs)
with certain edge geometries have received much attention recently due to a
range of possible technological applications. However, the magnetic properties
of pristine GNRs are not predicted to be particularly robust in the presence of
edge disorder. In this work, we examine the magnetic properties of GNRs doped
with transition-metal atoms using a combination of mean-field Hubbard and
Density Functional Theory techniques. The effect of impurity location on the
magnetic moment of such dopants in GNRs is investigated for the two principal
GNR edge geometries - armchair and zigzag. Moment profiles are calculated
across the width of the ribbon for both substitutional and adsorbed impurities
and regular features are observed for zigzag-edged GNRs in particular. Unlike
the case of edge-state induced magnetisation, the moments of magnetic
impurities embedded in GNRs are found to be particularly stable in the presence
of edge disorder. Our results suggest that the magnetic properties of
transition-metal doped GNRs are far more robust than those with moments arising
intrinsically due to edge geometry.Comment: submitte
Riccati-type equations, generalised WZNW equations, and multidimensional Toda systems
We associate to an arbitrary -gradation of the Lie algebra of a
Lie group a system of Riccati-type first order differential equations. The
particular cases under consideration are the ordinary Riccati and the matrix
Riccati equations. The multidimensional extension of these equations is given.
The generalisation of the associated Redheffer--Reid differential systems
appears in a natural way. The connection between the Toda systems and the
Riccati-type equations in lower and higher dimensions is established. Within
this context the integrability problem for those equations is studied. As an
illustration, some examples of the integrable multidimensional Riccati-type
equations related to the maximally nonabelian Toda systems are given.Comment: LaTeX2e, 18 page
Effects of a CPT-even and Lorentz-violating nonminimal coupling on the electron-positron scattering
We propose a new \emph{CPT}-even and Lorentz-violating nonminimal coupling
between fermions and Abelian gauge fields involving the CPT-even tensor
of the standard model extension. We thus
investigate its effects on the cross section of the electron-positron
scattering by analyzing the process .
Such a study was performed for the parity-odd and parity-even nonbirefringent
components of the Lorentz-violating tensor.
Finally, by using experimental data available in the literature, we have
imposed upper bounds as tight as on the magnitude of the
CPT-even and Lorentz-violating parameters while nonminimally coupled.Comment: LaTeX2e, 06 pages, 01 figure
- …