27,986 research outputs found
A computationally efficient method for calculating the maximum conductance of disordered networks: Application to 1-dimensional conductors
Random networks of carbon nanotubes and metallic nanowires have shown to be
very useful in the production of transparent, conducting films. The electronic
transport on the film depends considerably on the network properties, and on
the inter-wire coupling. Here we present a simple, computationally efficient
method for the calculation of conductance on random nanostructured networks.
The method is implemented on metallic nanowire networks, which are described
within a single-orbital tight binding Hamiltonian, and the conductance is
calculated with the Kubo formula. We show how the network conductance depends
on the average number of connections per wire, and on the number of wires
connected to the electrodes. We also show the effect of the inter-/intra-wire
hopping ratio on the conductance through the network. Furthermore, we argue
that this type of calculation is easily extendable to account for the upper
conductivity of realistic films spanned by tunneling networks. When compared to
experimental measurements, this quantity provides a clear indication of how
much room is available for improving the film conductivity.Comment: 7 pages, 5 figure
Spherical Scalar Field Halo in Galaxies
We study a spherically symmetric fluctuation of scalar dark matter in the
cosmos and show that it could be the dark matter in galaxies, provided that the
scalar field has an exponential potential whose overall sign is negative and
whose exponent is constrained observationally by the rotation velocities of
galaxies. The local space-time of the fluctuation contains a three dimensional
space-like hypersurface with surplus of angle.Comment: 5 REVTeX pages, no figures. Contains important suggestions provided
by the referee. Final version, to appear in Phys. Rev.
Phase transition and landscape statistics of the number partitioning problem
The phase transition in the number partitioning problem (NPP), i.e., the
transition from a region in the space of control parameters in which almost all
instances have many solutions to a region in which almost all instances have no
solution, is investigated by examining the energy landscape of this classic
optimization problem. This is achieved by coding the information about the
minimum energy paths connecting pairs of minima into a tree structure, termed a
barrier tree, the leaves and internal nodes of which represent, respectively,
the minima and the lowest energy saddles connecting those minima. Here we apply
several measures of shape (balance and symmetry) as well as of branch lengths
(barrier heights) to the barrier trees that result from the landscape of the
NPP, aiming at identifying traces of the easy/hard transition. We find that it
is not possible to tell the easy regime from the hard one by visual inspection
of the trees or by measuring the barrier heights. Only the {\it difficulty}
measure, given by the maximum value of the ratio between the barrier height and
the energy surplus of local minima, succeeded in detecting traces of the phase
transition in the tree. In adddition, we show that the barrier trees associated
with the NPP are very similar to random trees, contrasting dramatically with
trees associated with the spin-glass and random energy models. We also
examine critically a recent conjecture on the equivalence between the NPP and a
truncated random energy model
Two-component mixture of charged particles confined in a channel: melting
The melting of a binary system of charged particles confined in a {\it
quasi}-one-dimensional parabolic channel is studied through Monte Carlo
simulations. At zero temperature the particles are ordered in parallel chains.
The melting is anisotropic and different melting temperatures are obtained
according to the spatial direction, and the different types of particles
present in the system. Melting is very different for the single-, two- and
four-chain configurations. A temperature induced structural phase transition is
found between two different four chain ordered states which is absent in the
mono-disperse system. In the mixed regime, where the two types of particles are
only slightly different, melting is almost isotropic and a thermally induced
homogeneous distribution of the distinct types of charges is observed.Comment: To appear in Journal of Physics: condensed matter ; (13 pages, 12
figures
- …