31,877 research outputs found
The 4 Year COBE DMR data is non-Gaussian
I review our recent claim that there is evidence of non-Gaussianity in the 4
Year COBE DMR data. I describe the statistic we apply, the result we obtain and
make a detailed list of the systematics we have analysed. I finish with a
qualitative understanding of what it might be and its implications.Comment: Proceedings of Rome 3K conference, 5 pages, 3 figure
Elastic amplitudes studied with the LHC measurements at 7 and 8 TeV
Recent measurements of the differential cross sections in the forward region
of pp elastic scattering at 7 and 8 TeV show precise form of the
dependence. We propose a detailed analysis of these measurements including the
structures of the real and imaginary parts of the scattering amplitude. A good
description is achieved, confirming in all experiments the existence of a zero
in the real part in the forward region close to the origin, in agreement with
the prediction of a theorem by A. Martin, with important role in the observed
form of . Universal value for the position of this zero and
regularity in other features of the amplitudes are found, leading to
quantitative predictions for the forward elastic scattering at 13 TeV.Comment: 22 pages, 17 figures and 4 table
A Bayesian estimate of the skewness of the Cosmic Microwave Background
We propose a formalism for estimating the skewness and angular power spectrum
of a general Cosmic Microwave Background data set. We use the Edgeworth
Expansion to define a non-Gaussian likelihood function that takes into account
the anisotropic nature of the noise and the incompleteness of the sky coverage.
The formalism is then applied to estimate the skewness of the publicly
available 4 year Cosmic Background Explorer (COBE) Differential Microwave
Radiometer data. We find that the data is consistent with a Gaussian skewness,
and with isotropy. Inclusion of non Gaussian degrees of freedom has essentially
no effect on estimates of the power spectrum, if each is regarded as a
separate parameter or if the angular power spectrum is parametrized in terms of
an amplitude (Q) and spectral index (n). Fixing the value of the angular power
spectrum at its maxiumum likelihood estimate, the best fit skewness is
S=6.5\pm6.0\times10^4(\muK)^3; marginalizing over Q the estimate of the
skewness is S=6.5\pm8.4\times10^4(\muK)^3 and marginalizing over n one has
S=6.5\pm8.5\times10^4(\muK)^3.Comment: submitted to Astrophysical Journal Letter
Hysteresis and re-entrant melting of a self-organized system of classical particles confined in a parabolic trap
A self-organized system composed of classical particles confined in a
two-dimensional parabolic trap and interacting through a potential with a
short-range attractive part and long-range repulsive part is studied as
function of temperature. The influence of the competition between the
short-range attractive part of the inter-particle potential and its long-range
repulsive part on the melting temperature is studied. Different behaviors of
the melting temperature are found depending on the screening length ()
and the strength () of the attractive part of the inter-particle potential.
A re-entrant behavior and a thermal induced phase transition is observed in a
small region of ()-space. A structural hysteresis effect is observed
as a function of temperature and physically understood as due to the presence
of a potential barrier between different configurations of the system.Comment: 8 pages, 6 figure
Lorentz-breaking effects in scalar-tensor theories of gravity
In this work, we study the effects of breaking Lorentz symmetry in
scalar-tensor theories of gravity taking torsion into account. We show that a
space-time with torsion interacting with a Maxwell field by means of a
Chern-Simons-like term is able to explain the optical activity in syncrotron
radiation emitted by cosmological distant radio sources. Without specifying the
source of the dilaton-gravity, we study the dilaton-solution. We analyse the
physical implications of this result in the Jordan-Fierz frame. We also analyse
the effects of the Lorentz breaking in the cosmic string formation process. We
obtain the solution corresponding to a cosmic string in the presence of torsion
by keeping track of the effects of the Chern-Simons coupling and calculate the
charge induced on this cosmic string in this framework. We also show that the
resulting charged cosmic string gives us important effects concerning the
background radiation.The optical activity in this case is also worked out and
discussed.Comment: 10 pages, no figures, ReVTex forma
Evolution of Universe to the present inert phase
We assume that current state of the Universe can be described by the Inert
Doublet Model, containing two scalar doublets, one of which is responsible for
EWSB and masses of particles and the second one having no couplings to fermions
and being responsible for dark matter. We consider possible evolutions of the
Universe to this state during cooling down of the Universe after inflation. We
found that in the past Universe could pass through phase states having no DM
candidate. In the evolution via such states in addition to a possible EWSB
phase transition (2-nd order) the Universe sustained one 1-st order phase
transition or two phase transitions of the 2-nd order.Comment: 19 pages, 3 figure
- …