2,381 research outputs found
Maximum L-likelihood estimation
In this paper, the maximum L-likelihood estimator (MLE), a new
parameter estimator based on nonextensive entropy [Kibernetika 3 (1967) 30--35]
is introduced. The properties of the MLE are studied via asymptotic analysis
and computer simulations. The behavior of the MLE is characterized by the
degree of distortion applied to the assumed model. When is properly
chosen for small and moderate sample sizes, the MLE can successfully trade
bias for precision, resulting in a substantial reduction of the mean squared
error. When the sample size is large and tends to 1, a necessary and
sufficient condition to ensure a proper asymptotic normality and efficiency of
MLE is established.Comment: Published in at http://dx.doi.org/10.1214/09-AOS687 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Reliable inference for complex models by discriminative composite likelihood estimation
Composite likelihood estimation has an important role in the analysis of
multivariate data for which the full likelihood function is intractable. An
important issue in composite likelihood inference is the choice of the weights
associated with lower-dimensional data sub-sets, since the presence of
incompatible sub-models can deteriorate the accuracy of the resulting
estimator. In this paper, we introduce a new approach for simultaneous
parameter estimation by tilting, or re-weighting, each sub-likelihood component
called discriminative composite likelihood estimation (D-McLE). The
data-adaptive weights maximize the composite likelihood function, subject to
moving a given distance from uniform weights; then, the resulting weights can
be used to rank lower-dimensional likelihoods in terms of their influence in
the composite likelihood function. Our analytical findings and numerical
examples support the stability of the resulting estimator compared to
estimators constructed using standard composition strategies based on uniform
weights. The properties of the new method are illustrated through simulated
data and real spatial data on multivariate precipitation extremes.Comment: 29 pages, 4 figure
Efficient and robust estimation for financial returns: an approach based on q-entropy
We consider a new robust parametric estimation procedure, which minimizes an empirical version of the Havrda-Charvàt-Tsallis entropy. The resulting estimator adapts according to the discrepancy between the data and the assumed model by tuning a single constant q, which controls the trade-off between robustness and effciency. The method is applied to expected return and volatility estimation of financial asset returns under multivariate normality. Theoretical properties, ease of implementability and empirical results on simulated and financial data make it a valid alternative to classic robust estimators and semi-parametric minimum divergence methods based on kernel smoothing.q-entropy; robust estimation; power-divergence; financial returns
The Maximum Lq-Likelihood Method: an Application to Extreme Quantile Estimation in Finance
Estimating financial risk is a critical issue for banks and insurance companies. Recently, quantile estimation based on Extreme Value Theory (EVT) has found a successful domain of application in such a context, outperforming other approaches. Given a parametric model provided by EVT, a natural approach is Maximum Likelihood estimation. Although the resulting estimator is asymptotically efficient, often the number of observations available to estimate the parameters of the EVT models is too small in order to make the large sample property trustworthy. In this paper, we study a new estimator of the parameters, the Maximum Lq-Likelihood estimator (MLqE), introduced by Ferrari and Yang (2007). We show that the MLqE can outperform the standard MLE, when estimating tail probabilities and quantiles of the Generalized Extreme Value (GEV) and the Generalized Pareto (GP) distributions. First, we assess the relative efficiency between the the MLqE and the MLE for various sample sizes, using Monte Carlo simulations. Second, we analyze the performance of the MLqE for extreme quantile estimation using real-world financial data. The MLqE is characterized by a distortion parameter q and extends the traditional log-likelihood maximization procedure. When q?1, the new estimator approaches the traditionalMaximum Likelihood Estimator (MLE), recovering its desirable asymptotic properties; when q 6=1 and the sample size is moderate or small, the MLqE successfully trades bias for variance, resulting in an overall gain in terms of accuracy (Mean Squared Error).Maximum Likelihood, Extreme Value Theory, q-Entropy, Tail-related Risk Measures
The Maximum Lq-Likelihood Method: an Application to Extreme Quantile Estimation in Finance
Estimating financial risk is a critical issue for banks and insurance companies. Recently, quantile estimation based on Extreme Value Theory (EVT) has found a successful domain of application in such a context, outperforming other approaches. Given a parametric model provided by EVT, a natural approach is Maximum Likelihood estimation. Although the resulting estimator is asymptotically efficient, often the number of observations available to estimate the parameters of the EVT models is too small in order to make the large sample property trustworthy. In this paper, we study a new estimator of the parameters, the Maximum Lq-Likelihood estimator (MLqE), introduced by Ferrari and Yang (2007). We show that the MLqE can outperform the standard MLE, when estimating tail probabilities and quantiles of the Generalized Extreme Value (GEV) and the Generalized Pareto (GP) distributions. First, we assess the relative efficiency between the the MLqE and the MLE for various sample sizes, using Monte Carlo simulations. Second, we analyze the performance of the MLqE for extreme quantile estimation using real-world financial data. The MLqE is characterized by a distortion parameter q and extends the traditional log-likelihood maximization procedure. When q→1, the new estimator approaches the traditionalMaximum Likelihood Estimator (MLE), recovering its desirable asymptotic properties; when q 6=1 and the sample size is moderate or small, the MLqE successfully trades bias for variance, resulting in an overall gain in terms of accuracy (Mean Squared Error).Maximum Likelihood, Extreme Value Theory, q-Entropy, Tail-related Risk Measures
Efficient and robust estimation for financial returns: an approach based on q-entropy
We consider a new robust parametric estimation procedure, which minimizes an empirical version of the Havrda-Charv_at-Tsallis entropy. The resulting estimator adapts according to the discrepancy between the data and the assumed model by tuning a single constant q, which controls the trade-o_ between robustness and e_ciency. The method is applied to expected re- turn and volatility estimation of _nancial asset returns under multivariate normality. Theoretical properties, ease of implementability and empirical re- sults on simulated and _nancial data make it a valid alternative to classic robust estimators and semi-parametric minimum divergence methods based on kernel smoothingq-entropy, robust estimation, power-divergence, _nancial returns
- …