3,290 research outputs found

    Correlation effects in the electronic structure of the Ni-based superconducting KNi2S2

    Get PDF
    The LDA plus Gutzwiller variational method is used to investigate the groundstate physical properties of the newly discovered superconducting KNi2S2. Five Ni-3d Wannier-orbital basis are constructed by the density-functional theory, to combine with local Coulomb interaction to describe the normal state electronic structure of Ni-based superconductor. The band structure and the mass enhanced are studied based on a multiorbital Hubbard model by using Gutzwiller approximation method. Our results indicate that the correlation effects lead to the mass enhancement of KNi2S2. Different from the band structure calculated from the LDA results, there are three energy bands across the Fermi level along the X-Z line due to the existence of the correlation effects, which induces a very complicated Fermi surface along the X-Z line. We have also investigated the variation of the quasi-particle weight factor with the hole or electron doping and found that the mass enhancement character has been maintained with the doping.Comment: 12 pages, 6 figure

    Anderson Impurity in Helical Metal

    Get PDF
    We use a trial wave function to study the spin-1/2 Kondo effect of a helical metal on the surface of a three-dimensional topological insulator. While the impurity spin is quenched by conduction electrons, the spin-spin correlation of the conduction electron and impurity is strongly anisotropic in both spin and spatial spaces. As a result of strong spin-orbit coupling, the out-of-plane component of the impurity spin is found to be fully screened by the orbital angular momentum of the conduction electrons.Comment: The published versio

    Evaluating Feynman integrals by the hypergeometry

    Full text link
    The hypergeometric function method naturally provides the analytic expressions of scalar integrals from concerned Feynman diagrams in some connected regions of independent kinematic variables, also presents the systems of homogeneous linear partial differential equations satisfied by the corresponding scalar integrals. Taking examples of the one-loop B0B_{_0} and massless C0C_{_0} functions, as well as the scalar integrals of two-loop vacuum and sunset diagrams, we verify our expressions coinciding with the well-known results of literatures. Based on the multiple hypergeometric functions of independent kinematic variables, the systems of homogeneous linear partial differential equations satisfied by the mentioned scalar integrals are established. Using the calculus of variations, one recognizes the system of linear partial differential equations as stationary conditions of a functional under some given restrictions, which is the cornerstone to perform the continuation of the scalar integrals to whole kinematic domains numerically with the finite element methods. In principle this method can be used to evaluate the scalar integrals of any Feynman diagrams.Comment: 39 pages, including 2 ps figure

    Realization of the Single-pair-Weyl Phonons with the Maximum Charge Number in Acoustic Crystals

    Full text link
    To observe the Weyl phonon (WP) with the maximum charge and to design a realistic material structure containing only single-pair-WPs have long been considered two challenges in the field of topology physics. Here we have successfully designed an acoustic crystal to realize the single-pair-WPs with the maximum charge for the first time. Our theoretical simulations on acoustic band dispersions demonstrate that protected by the time-reversal symmetry (T\cal T) and the point group symmetries, a WP with the charge -4 (C=4\mathcal{C}=-4) and another WP with C=+4\mathcal{C}=+4 are located at the high-symmetry point Γ\Gamma and R, respectively, with the absence of any other kinds of WPs. Moreover, the singe-pair-WPs obtained here are designed by the simplest two-band mode, and the related quadruple-helicoid Fermi acrs can be observed clearly in experiments, since they aren't covered by any bulk bands and hybridized by other kinds of WPs. Our theoretical results provide a reliable acoustic crystal to study the topological properties of the single-pair-WPs with the maximum charge for experimentalists in this field.Comment: 7 pages; 4 figure

    The swap operation in the two-qubit Heisenberg XXZ model-effects of anisotropy and magnetic field

    Full text link
    In this paper we study the swap operation in a two-qubit anisotropic XXZ model in the presence of an inhomogeneous magnetic field. We establish the range of anisotropic parameter within which the swap operation is feasible. The swap errors caused by the inhomogeneous field are evaluated

    Catalogue of topological electrons and phonons in all allotropes of carbon

    Full text link
    Carbon, as one of the most common element in the earth, constructs hundreds of allotropic phases to present rich physical nature. In this work, by combining the ab inito calculations and symmetry analyses method, we systematically study a large number of allotropes of carbon (703), and discovered 315 ideal topological phononic materials and 32 topological electronic materials. The ideal topological phononic nature includes single, charge-two, three, four Weyl honons, the Dirac or Weyl nodal lines phonons, and nodal surfaces phonons. And the topological electron nature ncludes topological insulator, (Type-II) Dirac points, triple nodal points, the Dirac (Weyl) nodal lines, quadratic nodal lines and so on. For convenience, we take the uni in SG 178 and pbg in SG 230 as the examples to describe the topological features in the main. We find that it is the coexistence of single pair Weyl phonons and one-nodal surfaces phonons in the uni in SG 178, which can form the single surface arc in the (100) surface BZ and isolated double-helix surface states (IDHSSs)in the (110) surface BZ. In topological semimetal pbg in SG 230, we find that the perfect triple degenerate nodal point can be found in the near Fermi level, and it can form the clear surface states in the (001) and (110) surface BZ. Our work not only greatly expands the topological features in all allotropes of carbon, but also provide many ideal platforms to study the topological electrons and phonons

    High-Q exterior whispering gallery modes in a metal-coated microresonator

    Full text link
    We propose a kind of plasmonic whispering gallery modes highly localized on the exterior surface of a metal-coated microresonator. This exterior (EX) surface mode possesses high quality factors at room temperature, and can be efficiently excited by a tapered fiber. The EX mode can couple to an interior (IN) mode and this coupling produces a strong anti-crossing behavior, which not only allows conversion of IN to EX modes, but also forms a long-lived anti-symmetric mode. As a potential application, the EX mode could be used for a biosensor with a sensitivity high up to 500 nm per refraction index unit, a large figure of merit, and a wide detection range

    Movable Fiber-Integrated Hybrid Plasmonic Waveguide on Metal Film

    Full text link
    A waveguide structure consisting of a tapered nanofiber on a metal film is proposed and analyzed to support highly localized hybrid plasmonic modes. The hybrid plasmonic mode can be efficiently excited through the in-line tapered fiber based on adiabatic conversion and collected by the same fiber, which is very convenient in the experiment. Due to the ultrasmall mode area of plasmonic mode, the local electromagnetic field is greatly enhanced in this movable waveguide, which is potential for enhanced coherence light emitter interactions, such as waveguide quantum electrodynamics, single emitter spectrum and nonlinear optics

    Orientational behaviors of silk fibroin hydrogels

    Get PDF
    In this study, a novel shear-induced silk fibroin hydrogel with three-dimensional (3D) anisotropic and oriented gel skeleton/network morphology is presented. Amphipathic anionic and nontoxic sodium surfactin is blended with the silk fibroin to decrease its gelation time during the mechanical shearing process. The fibroin/surfactin blended solutions undergo a facial shearing process to accomplish a solâ gel transition within one hour. The dynamic solâ gel transition kinetic analysis, gel skeleton/network morphology, and mechanical property measurements are determined in order to visualize the fibroin/surfactin solâ gel transition during the shearing process and its resulting hydrogel. The results demonstrate that there is significant b-sheet assembly from random coil conformations in the fibroin/surfactin blended system during the facile shearing process. The silk fibroin b-sheets further transform into a fibrous large-scale aggregation with orientational and parallel arrangements to the shearing direction. The shear-induced fibroin/ surfactin hydrogel exhibits notable anisotropic and oriented 3D skeleton/network morphology and a significant mechanical compressive strength in proportion to the shearing stress, compared with the control fibroin/surfactin hydrogel undergoing no shearing process. Due to its oriented gel skeleton/network structure and significantly enhanced mechanical properties, the shear-induced fibroin/ surfactin gel may be suitable as a biomaterial in 3D oriented tissue regeneration, including for nerves, the cultivation of bone cells, and the repair of defects in muscle and ligament tissues.The work is supported by National Natural Science Foundation of China (Grant No. 51373114), PAPD and College Nature Science Research Project of Jiangsu Province, China (Grant No. 15KJA540001). S. C. Kundu holds ERA Chair Full Professor of European Commission Programme (RoReCaST) at 3Bs Research Group, University of Minho, Portugal.info:eu-repo/semantics/publishedVersio
    corecore