68 research outputs found
Generalized Arcsine Law and Stable Law in an Infinite Measure Dynamical System
Limit theorems for the time average of some observation functions in an
infinite measure dynamical system are studied. It is known that intermittent
phenomena, such as the Rayleigh-Benard convection and Belousov-Zhabotinsky
reaction, are described by infinite measure dynamical systems.We show that the
time average of the observation function which is not the function,
whose average with respect to the invariant measure is finite, converges to
the generalized arcsine distribution. This result leads to the novel view that
the correlation function is intrinsically random and does not decay. Moreover,
it is also numerically shown that the time average of the observation function
converges to the stable distribution when the observation function has the
infinite mean.Comment: 8 pages, 8 figure
Fractal iso-contours of passive scalar in smooth random flows
We consider a passive scalar field under the action of pumping, diffusion and
advection by a smooth flow with a Lagrangian chaos. We present theoretical
arguments showing that scalar statistics is not conformal invariant and
formulate new effective semi-analytic algorithm to model the scalar turbulence.
We then carry massive numerics of passive scalar turbulence with the focus on
the statistics of nodal lines. The distribution of contours over sizes and
perimeters is shown to depend neither on the flow realization nor on the
resolution (diffusion) scale for scales exceeding . The scalar
isolines are found fractal/smooth at the scales larger/smaller than the pumping
scale . We characterize the statistics of bending of a long isoline by the
driving function of the L\"owner map, show that it behaves like diffusion with
the diffusivity independent of resolution yet, most surprisingly, dependent on
the velocity realization and the time of scalar evolution
Lifetime distributions in the methods of non-equilibrium statistical operator and superstatistics
A family of non-equilibrium statistical operators is introduced which differ
by the system age distribution over which the quasi-equilibrium (relevant)
distribution is averaged. To describe the nonequilibrium states of a system we
introduce a new thermodynamic parameter - the lifetime of a system.
Superstatistics, introduced in works of Beck and Cohen [Physica A \textbf{322},
(2003), 267] as fluctuating quantities of intensive thermodynamical parameters,
are obtained from the statistical distribution of lifetime (random time to the
system degeneracy) considered as a thermodynamical parameter. It is suggested
to set the mixing distribution of the fluctuating parameter in the
superstatistics theory in the form of the piecewise continuous functions. The
distribution of lifetime in such systems has different form on the different
stages of evolution of the system. The account of the past stages of the
evolution of a system can have a substantial impact on the non-equilibrium
behaviour of the system in a present time moment.Comment: 18 page
- …