2,761 research outputs found

    Computations of Three-Body Continuum Spectra

    Get PDF
    We formulate a method to solve the coordinate space Faddeev equations for positive energies. The method employs hyperspherical coordinates and analytical expressions for the effective potentials at large distances. Realistic computations of the parameters of the resonances and the strength functions are carried out for the Borromean halo nucleus 6He (n+n+alpha) for J = 0+, 0-, 1+, 1-, 2+,2-. PACS numbers: 21.45.+v, 11.80.Jy, 31.15.Ja, 21.60.GxComment: 10 pages, 3 postscript figures, LaTeX, epsf.sty, corrected misprints in the caption of Fig.

    Three-Body Halos in Two Dimensions

    Get PDF
    A method to study weakly bound three-body quantum systems in two dimensions is formulated in coordinate space for short-range potentials. Occurrences of spatially extended structures (halos) are investigated. Borromean systems are shown to exist in two dimensions for a certain class of potentials. An extensive numerical investigation shows that a weakly bound two-body state gives rise to two weakly bound three-body states, a reminiscence of the Efimov effect in three dimensions. The properties of these two states in the weak binding limit turn out to be universal. PACS number(s): 03.65.Ge, 21.45.+v, 31.15.Ja, 02.60NmComment: 9 pages, 2 postscript figures, LaTeX, epsf.st

    Automated control of temperature regimes of alloyed steel products based on multiprocessors computing systems

    Get PDF
    Development features and use of multiprocessor computing system with its mathematical support and software for heat treatment modes simulation of metal billets are considered. The application of modern multiprocessor computing technologies is proposed for increasing the speed and efficiency of computation, which enables to effectively control technological processes. Through the special software the multiprocessor system is able to set and control necessary temperature conditions on all plane of cross-sectional of standard at heating and self-control of metal, and if necessary maybe began to control the thermal mode of treatment in the interval of temperatures of annealing

    Reading-out the state of a flux qubit by Josephson transmission line solitons

    Full text link
    We describe the read-out process of the state of a Josephson flux qubit via solitons in Josephson transmission lines (JTL) as they are in use in the standard rapid single flux quantum (RSFQ) technology. We consider the situation where the information about the state of the qubit is stored in the time delay of the soliton. We analyze dissipative underdamped JTLs, take into account their jitter, and provide estimates of the measuring time and efficiency of the measurement for relevant experimental parameters.Comment: 13 pages, 12 figure

    Collective Decoherence of Nuclear Spin Clusters

    Full text link
    The problem of dipole-dipole decoherence of nuclear spins is considered for strongly entangled spin cluster. Our results show that its dynamics can be described as the decoherence due to interaction with a composite bath consisting of fully correlated and uncorrelated parts. The correlated term causes the slower decay of coherence at larger times. The decoherence rate scales up as a square root of the number of spins giving the linear scaling of the resulting error. Our theory is consistent with recent experiment reported in decoherence of correlated spin clusters.Comment: 4 pages, 4 figure

    Coherent Schwinger Interaction from Darboux Transformation

    Full text link
    The exactly solvable scalar-tensor potential of the four-component Dirac equation has been obtained by the Darboux transformation method. The constructed potential has been interpreted in terms of nucleon-nucleon and Schwinger interactions of neutral particles with lattice sites during their channeling Hamiltonians of a Schwinger type is obtained by means of the Darboux transformation chain. The analitic structure of the Lyapunov function of periodic continuation for each of the Hamiltonians of the family is considered.Comment: 12 pages, Latex, six figures; six sections, one figure adde

    Metallurgical thermophysics processes identification based on extreme algorithms of high order of accuracy

    Get PDF
    The article is devoted the problem to researh the materials thermophysical properties by the inverse methods. Corresponding class of mathematical models is derived. The main research purpose is that the simulation models processing procedure as those that are controlled by input parameters, reduce, on the residual principle basis, to an extreme formulation. This approach allows to develop effective algorithms for solving quotient problems on simulation models of arbitrary accuracy order with adaptation of time modes of a thermophysical experiment. A package of applied problems had been developed for solving the coefficient problems of the heat-conductiving with the methods of mathematical simulation. Creation of package had been carried out considering the requirements of the object-oriented programming
    • …
    corecore