103 research outputs found
A validated stability-indicating HPLC method for determination of varenicline in its bulk and tablets
A simple, sensitive and accurate stability-indicating HPLC method has been developed and validated for determination of varenicline (VRC) in its bulk form and pharmaceutical tablets. Chromatographic separation was achieved on a Zorbax Eclipse XDB-C8 column (150 mm × 4.6 mm i.d., particle size 5 μm, maintained at ambient temperature) by a mobile phase consisted of acetonitrile and 50 mM potassium dihydrogen phosphate buffer (10:90, v/v) with apparent pH of 3.5 ± 0.1 and a flow rate of 1.0 ml/min. The detection wavelength was set at 235 nm. VRC was subjected to different accelerated stress conditions. The degradation products, when any, were well resolved from the pure drug with significantly different retention time values. The method was linear (r = 0.9998) at a concentration range of 2 - 14 μg/ml. The limit of detection and limit of quantitation were 0.38 and 1.11 μg/ml, respectively. The intra- and inter-assay precisions were satisfactory; the relative standard deviations did not exceed 2%. The accuracy of the method was proved; the mean recovery of VRC was 100.10 ± 1.08%. The proposed method has high throughput as the analysis involved short run-time (~ 6 min). The method met the ICH/FDA regulatory requirements. The proposed method was successfully applied for the determination of VRC in bulk and tablets with acceptable accuracy and precisions; the label claim percentages were 99.65 ± 0.32%. The results demonstrated that the method would have a great value when applied in quality control and stability studies for VRC
Absorption and distribution of etoricoxib in plasma, CSF, and wound tissue in patients following hip surgery—a pilot study
The perioperative administration of selective cyclooxygenase-2 (COX-2)-inhibitors to avoid postoperative pain is an attractive option: they show favorable gastro-intestinal tolerability, lack inhibition of blood coagulation, and carry a low risk of asthmatic attacks. The purpose of this study was to determine the cerebrospinal fluid (CSF), plasma, and tissue pharmacokinetics of orally administered etoricoxib and to compare it with effect data, i.e., COX-2-inhibition in patients after hip surgery. The study was performed in a blinded, randomized, parallel group design. A total of 12 adult patients were included who received 120 mg etoricoxib (n = 8) or placebo (n = 4) on day 1 post-surgery. Samples from plasma, CSF, and tissue exudates were collected over a period of 24 h post-dosing and analyzed for etoricoxib and prostaglandin E2 (PGE2) using liquid chromatography-tandem mass spectrometry and immuno-assay techniques. CSF area under the curve (AUC) [AUCs(O–24h)] for etoricoxib amounted to about 5% of the total AUC in plasma (range: 2–7%). Individual CSF lag times with respect to (50%) peak plasma concentration were ≤2 h in all but one case (median: 1 h). PGE2 production in tissue was significantly blocked by the COX-2 inhibitor starting with the appearance of etoricoxib in tissue and lasting for the whole observation period of 24 h (P < 0.01). In conclusion, etoricoxib reaches the CSF and site of surgery at effective concentrations and reduces PGE2 production at the presumed site of action
- …