8 research outputs found

    Ziram activates mitogen-activated protein kinases and decreases cytolytic protein levels in human natural killer cells

    No full text
    Human natural killer (NK) cells are central in immune defense with their ability to lyse tumor cells and virally infected cells. Tumor formation and viral infection may increase if NK cytotoxic function is disrupted. Ziram (zinc dithiocarbamate) is used as an accelerating agent in the production of latex and to protect various fruits and vegetables from fungal infection. Previously, we have shown that exposure to ziram inhibits NK lytic function. Butyltin environmental contaminants, which also inhibit NK lytic function, cause rapid activations of mitogen-activated protein kinases (MAPKs) and decreases in expression of the cytolytic proteins granzyme B and perforin (after 24 h) in exposed NK cells. MAPKs are important regulators of the lytic response of NK cells, and spurious activation of these enzymes by contaminants would leave the NK cells unable to respond to appropriate targets. This study examined the effects of ziram exposures on MAPKs (p44/42, p38, and c-jun-N-terminal kinase) and on levels of cytolytic proteins. Ten-minute to 6-h exposures of NK cells to ziram caused activation of MAPKs, p44/42, and p38. Exposure to ziram for 24 h caused a decrease in granzyme B and perforin levels. MAPK inhibitors were able to prevent these ziram-induced decreases in granzyme B and perforin. These results suggest that ziram-induced MAPK activation is at least in part responsible for decreased cytolytic function in ziram-exposed NK cells. Furthermore, the results indicate that these changes are in common with other environmental contaminants that have been shown to decrease NK lytic function

    Activation of p44/42 in human natural killer cells decreases cell-surface protein expression: Relationship to tributyltin-induced alterations of protein expression

    No full text
    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56

    Increases in Cytosolic Calcium Ion Levels in Human Natural Killer Cells in Response to Butyltin Exposure

    No full text
    This study investigated whether exposures to butyltins (BTs), tributylin (TBT) and dibutyltin (DBT) were able to alter cytosolic calcium levels in human natural killer (NK) cells. Additionally, the effects of cytosolic calcium ion increases on the activation state of mitogen activated protein kinases (MAPKs) in NK cells were also investigated. NK cells are an intital immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). TBT has also been shown to activate MAPKs in NK cells. The results of this study indicated that TBT increased cytosolic calcium levels by as much as 100% after a 60 min exposure to 500 nM TBT while DBT increased cytosolic calcium levels to a much smaller extent (and required higher concentrations). The results also indicated that increases in cytosolic calcium could activate MAPKs but only for a short period of time (5 min), while previous studies showed that activation of MAPKs by TBT last for at least 6 hours. Thus, it appears that TBT stimulated increases in cytosolic calcium may contribute to, but are not fully responsible for, TBT-induced activation of MAPKs
    corecore