21 research outputs found

    Parameter identification problems in the modelling of cell motility

    Get PDF
    We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg–Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree

    A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans

    Get PDF
    Background The wild relatives of crops represent a major source of valuable traits for crop improvement. These resources are threatened by habitat destruction, land use changes, and other factors, requiring their urgent collection and long-term availability for research and breeding from ex situ collections. We propose a method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives as a means to guide efficient and effective collecting activities. Methodology/Principal Findings The methodology prioritizes among taxa based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex situ collections. Gap “hotspots”, representing priority target areas for collecting, are concentrated in central Mexico, although the narrow endemic nature of a suite of priority species adds a number of specific additional regions to spatial collecting priorities. Conclusions/Significance Results of the gap analysis method mostly align very well with expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such as the degree of relatedness to cultivated species (i.e. ease of use in crop breeding). Furthermore, results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ collections of the world's plant genetic resource

    Comparative evaluation of different medication safety measures for the emergency department: physicians’ usage and acceptance of training, poster, checklist and computerized decision support

    Get PDF
    BACKGROUND: Although usage and acceptance are important factors for a successful implementation of clinical decision support systems for medication, most studies only concentrate on their design and outcome. Our objective was to comparatively investigate a set of traditional medication safety measures such as medication safety training for physicians, paper-based posters and checklists concerning potential medication problems versus the additional benefit of a computer-assisted medication check. We concentrated on usage, acceptance and suitability of such interventions in a busy emergency department (ED) of a 749 bed acute tertiary care hospital. METHODS: A retrospective, qualitative evaluation study was conducted using a field observation and a questionnaire-based survey. Six physicians were observed while treating 20 patient cases; the questionnaire, based on the Technology Acceptance Model 2 (TAM2), has been answered by nine ED physicians. RESULTS: During field observations, we did not observe direct use of any of the implemented interventions for medication safety (paper-based and electronic). Questionnaire results indicated that the electronic medication safety check was the most frequently used intervention, followed by checklist and posters. However, despite their positive attitude, physicians most often stated that they use the interventions in only up to ten percent for subjectively “critical” orders. Main reasons behind the low usage were deficits in ease-of-use and fit to the workflow. The intention to use the interventions was rather high after overcoming these barriers. CONCLUSIONS: Methodologically, the study contributes to Technology Acceptance Model (TAM) research in an ED setting and confirms TAM2 as a helpful diagnostic tool in identifying barriers for a successful implementation of medication safety interventions. In our case, identified barriers explaining the low utilization of the implemented medication safety interventions - despite their positive reception - include deficits in accessibility, briefing for the physicians about the interventions, ease-of-use and compatibility to the working environment

    Data from: The structural and functional connectivity of the grassland plant Lychnis flos-cuculi

    Full text link
    Understanding the relationship between structural and functional connectivity is essential for successful restoration and conservation management, particularly in intensely managed agricultural landscapes. We evaluated the relationship between structural and functional connectivity of the wetland plant Lychnis flos-cuculi in a fragmented agricultural landscape using landscape genetic and network approaches. First, we studied the effect of structural connectivity, such as geographic distance and various landscape elements (forest, agricultural land, settlements and ditch verges), on gene flow among populations as a measurement of functional connectivity. Second, we examined the effect of structural graph-theoretic connectivity measures on gene flow among populations and on genetic diversity within populations of L. flos-cuculi. Among landscape elements, forests hindered gene flow in L. flos-cuculi, whereas gene flow was independent of geographic distance. Among the structural graph-theoretic connectivity variables, only intrapopulation connectivity, which was based on population size, had a significant positive effect on gene flow, that is, more gene flow took place among larger populations. Unexpectedly, interpopulation connectivity of populations, which takes into account the spatial location and distance among populations, did not influence gene flow in L. flos-cuculi. However, higher observed heterozygosity and lower inbreeding was observed in populations characterised by higher structural interpopulation connectivity. This finding shows that a spatially coherent network of populations is significant for maintaining the genetic diversity of populations. Nevertheless, lack of significant relationships between gene flow and most of the structural connectivity measures suggests that structural connectivity does not necessarily correspond to functional connectivity
    corecore