4 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    The Physiological and Biochemical Responses of a Medicinal Plant (Salvia miltiorrhiza L.) to Stress Caused by Various Concentrations of NaCl

    No full text
    Salvia miltiorrhiza, which is commonly known as Danshen, is a traditional Chinese herbal medicine. To illustrate its physiological and biochemical responses to salt stress and to evaluate the feasibility of cultivating this plant in saline coastal soils, a factorial experiment under hydroponic conditions was arranged on the basis of a completely randomised design with three replications. Five salinity treatments (0, 25, 50, 75 and 100 mM NaCl) were employed in this experiment. The results showed that salinity treatments of <100 mM NaCl did not affect the growth of Salvia miltiorrhiza in a morphological sense, but significantly inhibit the accumulation of dry matter. Salinity treatments significantly decreased the Chl-b content but caused a negligible change in the Chl-a content, leading to a conspicuous overall decrease in the T-Chl content. The Na(+) content significantly increased with increasing hydroponic salinity but the K(+) and Ca(2+) contents were reversed, indicating that a high level of external Na(+) resulted in a decrease in both K(+) and Ca(2+) concentrations in the organs of Salvia miltiorrhiza. Salt stress significantly decreased the superoxide dismutase (SOD) activity of Salvia miltiorrhiza leaves in comparison with that of the control. On the contrary, the catalase (CAT) activity in the leaves markedly increased with the increasing salinity of the hydroponic solution. Moreover, the soluble sugar and protein contents in Salvia miltiorrhiza leaves dramatically increased with the increasing salinity of the hydroponic solution. These results suggested that antioxidant enzymes and osmolytes are partially involved in the adaptive response to salt stress in Salvia miltiorrhiza, thereby maintaining better plant growth under saline conditions

    Global, regional, and national trends in routine childhood vaccination coverage from 1980 to 2023 with forecasts to 2030: a systematic analysis for the Global Burden of Disease Study 2023

    Full text link
    corecore