1,199 research outputs found

    Classes of adolescents with disruptive behaviors in a general population sample

    Get PDF
    Background To study disruptive behaviors adequately, we need to distinguish between individuals with different types of problems that may have a different etiology. The availability of a taxonomic system that helps in identifying homogeneous groups of individuals, with similar patterns of disruptive behaviors, is crucial to achieve this goal. Therefore, we examine which classes of preadolescents with symptoms of Attention Deficit/Hyperactivity Disorder (ADHD), Oppositional Defiant Disorder ( ODD), and Conduct Disorder (CD) can be identified in the general population. Methods Disruptive behaviors of 2,230 10-12 year olds from the Dutch general population were assessed with the Child Behavior Checklist and Youth. Self-Report. Results Latent class analysis revealed three classes of preadolescents: the first characterized by high scores on ADHD, ODD, and CD items; a second by high probabilities of ADHD and ODD symptoms; a third with low scores on all items. Conclusions Because classes of preadolescents with symptoms of only one type of disruptive behavior problems could not be identified, it can be questioned how useful separate diagnostic distinctions are in general population studies

    Predicting Transitions in Low and High Levels of Risk Behavior from Early to Middle Adolescence: The TRAILS Study

    Get PDF
    The present study examined the joint development of substance use and externalizing problems in early and middle adolescence. First, it was tested whether the relevant groups found in previous studies i.e., those with an early onset, a late onset, and no onset or low levels of risk behavior could be identified, while using a developmental model of a single, underlying construct of risk behavior. Second, departing from Moffitt’s taxonomy of antisocial behavior, it was tested if early, but not late, onset risk behavior is predicted by a problematic risk profile in childhood. Data were used from TRAILS, a population based cohort study, starting at age 11 with two follow-ups at mean ages of 13.6 and 16.3 years. Latent transition analyses demonstrated that, both in early and middle adolescence, a single underlying construct of risk behavior, consisting of two classes (labeled as low and high risk behavior), adequately represented the data. Respondents could be clearly classified into four possible transition patterns from early to middle adolescence, with a transition from high to low being almost non-existent (2.5 %), low to low (39.4 %) and low to high (41.8 %) being the most prevalent, and high to high (16.2 %) substantial. As hypothesized, only the high-high group was characterized by a clear adverse predictor profile in late childhood, while the low-high group was not. This study demonstrates that the development of substance use is correlated with externalizing problems and underscores the theory that etiologies of early and later onset risk behavior are different

    Development of a 3D workspace Shoulder Assessment Tool Incorporating Electromyography and an Inertial Measurement Unit - A preliminary study

    Get PDF
    Traditional shoulder Range of Movement (ROM) measurement tools suffer from inaccuracy or from long experimental set-up times. Recently, it has been demonstrated that relatively low-cost wearable inertial measurement unit (IMU) sensors can overcome many of the limitations of traditional motion tracking systems. The aim of this study is to develop and evaluate a single IMU combined with an Electromyography (EMG) sensor to monitor the 3D reachable workspace with simultaneous measurement of deltoid muscle activity across the shoulder ROM. Six volunteer subjects with healthy shoulders and one participant with a ‘frozen’ shoulder were recruited to the study. Arm movement in 3D space was plotted in spherical coordinates while the relative EMG intensity of any arm position is presented graphically. The results showed that there was an average ROM surface area of 27291±538 deg2 among all six healthy individuals and a ROM surface area of 13571±308 deg2 for the subject with frozen shoulder. All three sections of the deltoid show greater EMG activity at higher elevation angles. Using such tools enables individuals, surgeons and physiotherapists to measure the maximum envelope of motion in conjunction with muscle activity in order to provide an objective assessment of shoulder performance in the voluntary 3D workspace

    Design of the Quality of Life in Motion (QLIM) study: a randomized controlled trial to evaluate the effectiveness and cost-effectiveness of a combined physical exercise and psychosocial training program to improve physical fitness in children with cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood cancer and its treatment have considerable impact on a child's physical and mental wellbeing. Especially long-term administration of chemotherapy and/or radiotherapy impairs physical fitness both during and after therapy, when children often present with muscle weakness and/or low cardiorespiratory fitness. Physical exercise can improve these two elements of physical fitness, but the positive effects of physical exercise might be further increased when a child's wellbeing is simultaneously enhanced by psychosocial training. Feeling better may increase the willingness and motivation to engage in sports activities. Therefore, this multi-centre study evaluates the short and long-term changes in physical fitness of a child with a childhood malignancy, using a combined physical exercise and psychosocial intervention program, implemented during or shortly after treatment. Also examined is whether positive effects on physical fitness reduce inactivity-related adverse health problems, improve quality of life, and are cost-effective.</p> <p>Methods</p> <p>This multi-centre randomized controlled trial compares a combined physical and psychosocial intervention program for children with cancer, with care as usual (controls). Children with cancer (aged 8-18 years) treated with chemotherapy and/or radiotherapy, and who are no longer than 1 year post-treatment, are eligible for participation. A total of 100 children are being recruited from the paediatric oncology/haematology departments of three Dutch university medical centres. Patients are stratified according to pubertal stage (girls: age ≀10 or >10 years; boys: ≀11 or >11 years), type of malignancy (haematological or solid tumour), and moment of inclusion into the study (during or after treatment), and are randomly assigned to the intervention or control group.</p> <p>Discussion</p> <p>Childhood cancer patients undergoing long-term cancer therapy may benefit from a combined physical exercise and psychosocial intervention program since it may maintain or enhance their physical fitness and increase their quality of life. However, the feasibility, patient need, and effectiveness of such a program should be established before the program can be implemented as part of standard care.</p> <p>Trial registration number</p> <p>NTR1531 (The Netherlands National Trial Register)</p

    Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking

    Get PDF
    A common feature in biological neuromuscular systems is the redundancy in joint actuation. Understanding how these redundancies are resolved in typical joint movements has been a long-standing problem in biomechanics, neuroscience and prosthetics. Many empirical studies have uncovered neural, mechanical and energetic aspects of how humans resolve these degrees of freedom to actuate leg joints for common tasks like walking. However, a unifying theoretical framework that explains the many independent empirical observations and predicts individual muscle and tendon contributions to joint actuation is yet to be established. Here we develop a computational framework to address how the ankle joint actuation problem is resolved by the neuromuscular system in walking. Our framework is founded upon the proposal that a consideration of both neural control and leg muscle-tendon morphology is critical to obtain predictive, mechanistic insight into individual muscle and tendon contributions to joint actuation. We examine kinetic, kinematic and electromyographic data from healthy walking subjects to find that human leg muscle-tendon morphology and neural activations enable a metabolically optimal realization of biological ankle mechanics in walking. This optimal realization (a) corresponds to independent empirical observations of operation and performance of the soleus and gastrocnemius muscles, (b) gives rise to an efficient load-sharing amongst ankle muscle-tendon units and (c) causes soleus and gastrocnemius muscle fibers to take on distinct mechanical roles of force generation and power production at the end of stance phase in walking. The framework outlined here suggests that the dynamical interplay between leg structure and neural control may be key to the high walking economy of humans, and has implications as a means to obtain insight into empirically inaccessible features of individual muscle and tendons in biomechanical tasks.National Institutes of Health (U.S.) (NIH Pioneer Award DP1 OD003646)Massachusetts Institute of Technology. Media Laboratory (Consortia Account 2736448)Massachusetts Institute of Technology. Media Laboratory (Consortia Account 6895867

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR): review of phenotype associated with KIF11 mutations

    Get PDF
    Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR) (MIM No.152950) is a rare autosomal dominant condition for which a causative gene has recently been identified. Mutations in the kinesin family member 11 (KIF11) gene have now been described in 16 families worldwide. This is a review of the condition based on the clinical features of 37 individuals from 22 families. This report includes nine previously unreported families and additional information for some of those reported previously. The condition arose de novo in 8/20 families (40%). The parental results were not available for two probands. The mutations were varied and include missense, nonsense, frameshift, and splice site and are distributed evenly throughout the KIF11 gene. In our cohort, 86% had microcephaly, 78% had an ocular abnormality consistent with the diagnosis, 46% had lymphoedema, 73% had mild-moderate learning difficulties, 8% had epilepsy, and 8% had a cardiac anomaly. We identified three individuals with KIF11 mutations but no clinical features of MCLMR demonstrating reduced penetrance. The variable expression of the phenotype and the presence of mildly affected individuals indicates that the prevalence may be higher than expected, and we would therefore recommend a low threshold for genetic testing

    A model of open-loop control of equilibrium position and stiffness of the human elbow joint

    Get PDF
    According to the equilibrium point theory, the control of posture and movement involves the setting of equilibrium joint positions (EP) and the independent modulation of stiffness. One model of EP control, the α-model, posits that stable EPs and stiffness are set open-loop, i.e. without the aid of feedback. The purpose of the present study was to explore for the elbow joint the range over which stable EPs can be set open-loop and to investigate the effect of co-contraction on intrinsic low-frequency elbow joint stiffness (
    • 

    corecore