9 research outputs found

    Contribution of Various Carbon Sources Toward Isoprene Biosynthesis in Poplar Leaves Mediated by Altered Atmospheric CO2 Concentrations

    Get PDF
    Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus Ă— canescens) trees grown and measured at different atmospheric CO2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41+, which represents, in part, substrate derived from pyruvate, and M69+, which represents the whole unlabeled isoprene molecule. We observed a trend of slower 13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP). Trees grown under sub-ambient CO2 (190 ppmv) had rates of isoprene emission and rates of labeling of M41+ and M69+ that were nearly twice those observed in trees grown under elevated CO2 (590 ppmv). However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO2

    Advanced methods of plant disease detection. A review

    No full text
    International audiencePlant diseases are responsible for major economic losses in the agricultural industry worldwide. Monitoring plant health and detecting pathogen early are essential to reduce disease spread and facilitate effective management practices. DNA-based and serological methods now provide essential tools for accurate plant disease diagnosis, in addition to the traditional visual scouting for symptoms. Although DNA-based and serological methods have revolutionized plant disease detection, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic diffusion. They need at least 1–2 days for sample harvest, processing, and analysis. Here, we describe modern methods based on nucleic acid and protein analysis. Then, we review innovative approaches currently under development. Our main findings are the following: (1) novel sensors based on the analysis of host responses, e.g., differential mobility spectrometer and lateral flow devices, deliver instantaneous results and can effectively detect early infections directly in the field; (2) biosensors based on phage display and biophotonics can also detect instantaneously infections although they can be integrated with other systems; and (3) remote sensing techniques coupled with spectroscopy-based methods allow high spatialization of results, these techniques may be very useful as a rapid preliminary identification of primary infections. We explain how these tools will help plant disease management and complement serological and DNA-based methods. While serological and PCR-based methods are the most available and effective to confirm disease diagnosis, volatile and biophotonic sensors provide instantaneous results and may be used to identify infections at asymptomatic stages. Remote sensing technologies will be extremely helpful to greatly spatialize diagnostic results. These innovative techniques represent unprecedented tools to render agriculture more sustainable and safe, avoiding expensive use of pesticides in crop protection

    N-Stoffwechsel

    No full text

    The Inhibin/Activin Family of Hormones and Growth Factors

    No full text

    Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview

    No full text

    Advanced methods of plant disease detection. A review

    No full text

    Animal’s Functional Role in the Landscape

    No full text
    corecore