129 research outputs found

    Influence of Indigenous Starter Cultures on the Free Fatty Acids Content During Ripening in Artisan Sausages Produced in the Basilicata Region

    Get PDF
    The influence of indigenous starter cultures on the free fatty acids content during ripening of »salsiccia«, a typical dry fermented sausage produced in the Basilicata region, was studied. Three batches of »salsiccia« were produced using different starter mixtures (Lactobacillus sakei G20 and Staphylococcus xylosus S81; L. sakei G20 and S. xylosus S142; L. sakei G20 and S. xylosus S206), while the control batch was produced without a starter. The amounts of free fatty acids present in the samples at the end of the ripening period were not significantly different, suggesting that the lipolytic enzymes naturally occurring in meat could play a predominant role in the free fatty acids release. Oleic and linoleic acids were present in the highest concentrations, while only small quantities of short chain fatty acids were detected, with acetic acid being the most representative one

    A sensory shelf-life study for the evaluation of new eco-sustainable packaging of single-portion croissants

    Get PDF
    Understanding the correlation between straightforward analytical methods and sensory attributes is pivotal for transitioning to sustainable packaging while improving product quality. In this context, the viability of eco-sustainable packaging alternatives for single-packaged croissants has been investigated through examining the correlations between analytical methods, sensory attributes, employing quantitative descriptive analysis (QDA), and consumer survival analysis. The performance of biaxially oriented polypropylene (BOPP), a petrochemical plastic film, against paper-based, compostable, and biodegradable films over a 150-day croissant storage period was compared in this study, examining both physiochemical and sensory perspectives. The results showed a correlation between a lower water vapour barrier in packaging materials and increased moisture migration and croissant hardness, as assessed by the Avrami kinetic model. Notably, given its reduced barrier properties, the compostable film accelerated sensory profile deterioration, as evidenced by QDA results. Shelf-life estimation, assessed by consumer rejection, underscored the viability of the biodegradable film for up to 185 days, surpassing BOPP, paper-based, and other biodegradable alternatives. Using linear regression, physiochemical parameters associated with predicted shelf-life were elucidated. Overall, croissants were rejected by 50% of consumers when they reached humidity levels below 18%, water activity below 0.81, firmness exceeding 1064 N, pH above 4.4, and acidity below 4.5. Based on the results of this study, biodegradable packaging emerges as a promising alternative to traditional BOPP, offering a sustainable opportunity to extend the shelf-life of croissants

    Improvement of Analytical Methods for the Determination of Polyphenolic Bioactive Compounds in Berry Fruits

    Get PDF
    Berry fruits contain high levels of different phytochemicals, most of which are phenolic molecules. Fruits of the same cultivar from different locations and different harvest years have different chemical compositions, particularly related to polyphenols. The difference may be due to specific climatic conditions, the type of soil in which the plants grow, and the stresses to which the plants were subjected because these phytochemicals are produced as a defense mechanism through a secondary metabolic process. For this reason, it is important to establish simple and reliable procedure to determine polyphenolic compounds in berry fruits considering the increasing attention on these compounds for different potential uses. In order to choose and to improve the most adequate analytical procedure for the determination of the polyphenolic substances in berry fruits, different methods were applied and compared on samples of elderberry and blackberry

    Supercritical Fluid Extraction of Evening Primrose Oil - Kinetic and Mass Transfer Effects.

    Get PDF
    For processing utilization, supercritical fluid extraction requires a thorough understanding of the relevant phase equilibria, mass balance, and kinetic factors that impact on the successful recovery of extracts. In this study, we have determined the factors contributing to the kinetics and mass transfer of evening primrose oil (EPO) from its ground seed matrix, to supplement previously determined solubility data and chemical characteriza\uadtion of this oil moiety. The effect of extraction pressure, temperature, fluid density, and flow rate (over a threefold range) have been ascertained; the flow rate effect being correlated in terms of the extracted seed mass and similar data from the literature performed on a pilot and production plant scale. Using a dual mass transfer model, we have correlated the theory with extraction experiments conducted over a pressure range from 20-70 MPa, temperatures from 40\ub0-60\ub0C, and carbon dioxide flow rates in the interval from 9-27 g/ min. The agreement between the model calculations and experimental data is excellent allowing potential use of the data in process desig

    Influence of indigenous starter coltures on the free fatty acids release during ripening in artisan sausages produced in the Basilicata region.

    Get PDF
    The influence of indigenous starter cultures on the free fatty acids content during ripening of \ubbsalsiccia\uab, a typical dry fermented sausage produced in the Basilicata region, was studied. Three batches of \ubbsalsiccia\uab were produced using different starter mixtures (Lactobacillus sakei G20 and Staphylococcus xylosus S81; L. sakei G20 and S. xylosus S142; L. sakei G20 and S. xylosus S206), while the control batch was produced without a starter. The amounts of free fatty acids present in the samples at the end of the ripening period were not significantly different, suggesting that the lipolytic enzymes naturally occurring in meat could play a predominant role in the free fatty acids release. Oleic and linoleic acids were present in the highest concentrations, while only small quantities of short chain fatty acids were detected, with acetic acid being the most representative one

    HPLC determination of agmatine and other amines in wine.

    Get PDF
    An optimised HPLC analysis is described for the determination by dansylation of the following 11 biogenic amines in wine: agmatine, cadaverine, ethanolamine, histamine, methylamine, 2-phenylethylamine, spermine, spermidine, putrescine, tryptamine and tyramine. Seven amines were found in red and white wines produced in Southern Italy, being present at levels ranging from not detectable to 10.97 mg/L. The most abundant amine resulted ethanolamine, while the polyamine present at the highest concentration was agmatine with maximum levels of 9.92 mg/L. Total biogenic amines content was higher in the red wines

    Co-encapsulation of vitamin D and rutin in chitosan-zein microparticles

    Get PDF
    © 2022 The Authors. Published by Springer. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1007/s11694-022-01340-2There is a growing interest in co-encapsulating multiple species to harness potential synergy between them, enhance their stability and efficacy in various products. The aim of this work was to co-encapsulate vitamin D3 and rutin inside chitosan-zein microparticles using a simple and easily scalable process for food fortification. This was achieved via anti-solvent precipitation coupled with spray-drying. Free-flowing powders of spherical microparticles with wrinkled surface and particle size < 10 ÎŒm were obtained. The encapsulation efficiency was 75% for vitamin D3 and 44% for rutin and this could be attributed to their different molecular size and affinity to the aqueous phase. The physicochemical properties were characterized by X-Ray powder diffraction and Fourier transform infrared spectroscopy. The two crystalline bioactive compounds were present in the microparticles in amorphous form, which would allow for better bioavailability when compared to non-encapsulated crystalline solid. Therefore, the obtained microparticles would be suitable for use as food ingredient for vitamin D3 fortification, with the co-encapsulated rutin acting as stability and activity enhancer.This work was supported by Regione Veneto FSE project No. 1695–16-11–2018.Published onlin

    electrolysed water in the food industry as supporting of environmental sustainability

    Get PDF
    Food safety is a priority for the food industry and to achieve this result a correct plant sanitation programme is of the utmost importance. Among various disinfection techniques, an emerging one is represented by the use of electrolysed water (EW) as the disinfecting agent. The use of EW is compliant with the desire to find alternatives to chlorination and heat treatments, representing a green cleaning alternative to toxic disinfectants. EW is an activated liquid, obtained by passing a diluted saline solution (NaCl, KCl or MgCl2) through an electrolytic cell, thus causing the production from the anode side of electrolysed oxidising water, containing high dissolved oxygen, free chlorine and characterised by a low pH (2.3–2.7) and a high oxidation–reduction potential (ORP > 1,000 mV). At the same time from the cathode side electrolysed reduced water is produced, with high pH (10.0–11.5), high dissolved hydrogen and low ORP (−800 to −900 mV). Unlike other chemical disinfectants, EW is not harmful for skin and mucous membranes and is quite easy to handle. Furthermore, the use of EW is relatively inexpensive and, above all, is a sustainable technique. Currently used sanitisers (e.g. glutaraldehyde, formaldehyde, etc.) are effective, but their adverse effects on the environment are well known. Differently from these chemicals, the use of EW has a reduced impact on the environment and because of its properties, it may find several applications in the food industry. In this work, the characteristics and some EW applications as sustainable sanitation technique applied in the food industry are reported and discussed

    Actual trends and improvements in olive oil extraction technology

    Full text link
    Olive oil is one of the most important oils for human consumption due to its peculiar sensorial characteristics and its beneficial effects on human health. Starting from the Olea europaea fruits, the technological aspects of the whole extraction process may affect both the overall yield and quality of the recovered oil. Over the years in order to produce high quality Extra Virgin Olive Oil (EVOO) there have been several innovation and changes in the various technical phases (milling, malaxation, extraction) involved in the olive oil recovery. However, while the EVOO quality should be of the utmost importance, producers have also to face other complementary issues, such as the need for increasing extraction yields, improving the level of automatization and reducing the overall extraction costs, including the disposal of the generated by-products. In this paper the technological evolution related to the EVOO production is reported, taking into account the actual trends and innovations involving the extraction process
    • 

    corecore