304 research outputs found
Liquid-gas coexistence and critical point shifts in size-disperse fluids
Specialized Monte Carlo simulations and the moment free energy (MFE) method
are employed to study liquid-gas phase equilibria in size-disperse fluids. The
investigation is made subject to the constraint of fixed polydispersity, i.e.
the form of the `parent' density distribution of the particle
diameters , is prescribed. This is the experimentally realistic
scenario for e.g. colloidal dispersions. The simulations are used to obtain the
cloud and shadow curve properties of a Lennard-Jones fluid having diameters
distributed according to a Schulz form with a large (40%) degree of
polydispersity. Good qualitative accord is found with the results from a MFE
method study of a corresponding van der Waals model that incorporates
size-dispersity both in the hard core reference and the attractive parts of the
free energy. The results show that polydispersity engenders considerable
broadening of the coexistence region between the cloud curves. The principal
effect of fractionation in this region is a common overall scaling of the
particle sizes and typical inter-particle distances, and we discuss why this
effect is rather specific to systems with Schulz diameter distributions. Next,
by studying a family of such systems with distributions of various widths, we
estimate the dependence of the critical point parameters on . In
contrast to a previous theoretical prediction, size-dispersity is found to
raise the critical temperature above its monodisperse value. Unusually for a
polydisperse system, the critical point is found to lie at or very close to the
extremum of the coexistence region in all cases. We outline an argument showing
that such behaviour will occur whenever size polydispersity affects only the
range, rather than the strength of the inter-particle interactions.Comment: 14 pages, 12 figure
Effects of polymer polydispersity on the phase behaviour of colloid-polymer mixtures
We study the equilibrium behaviour of a mixture of monodisperse hard sphere
colloids and polydisperse non-adsorbing polymers at their -point, using
the Asakura-Oosawa model treated within the free-volume approximation. Our
focus is the experimentally relevant scenario where the distribution of polymer
chain lengths across the system is fixed. Phase diagrams are calculated using
the moment free energy method, and we show that the mean polymer size at which gas-liquid phase separation first occurs decreases with increasing
polymer polydispersity . Correspondingly, at fixed mean polymer size,
polydispersity favours gas-liquid coexistence but delays the onset of
fluid-solid separation. On the other hand, we find that systems with different
but the same {\em mass-averaged} polymer chain length have nearly
polydispersity-independent phase diagrams. We conclude with a comparison to
previous calculations for a semi-grandcanonical scenario, where the polymer
chemical potentials are imposed, which predicted that fluid-solid coexistence
was over gas-liquid in some areas of the phase diagram. Our results show that
this somewhat counter-intuitive result arose because the actual polymer size
distribution in the system is shifted to smaller sizes relative to the polymer
reservoir distribution.Comment: Changes in v2: sketch in Figure 1 corrected, other figures improved;
added references to experimental work and discussion of mapping from polymer
chain length to effective radiu
Phase behaviour and particle-size cutoff effects in polydisperse fluids
We report a joint simulation and theoretical study of the liquid-vapor phase
behaviour of a fluid in which polydispersity in the particle size couples to
the strength of the interparticle interactions. Attention is focussed on the
case in which the particles diameters are distributed according to a fixed
Schulz form with degree of polydispersity . The coexistence
properties of this model are studied using grand canonical ensemble Monte Carlo
simulations and moment free energy calculations. We obtain the cloud and shadow
curves as well as the daughter phase density distributions and fractional
volumes along selected isothermal dilution lines. In contrast to the case of
size-{\em independent} interaction strengths (N.B. Wilding, M. Fasolo and P.
Sollich, J. Chem. Phys. {\bf 121}, 6887 (2004)), the cloud and shadow curves
are found to be well separated, with the critical point lying significantly
below the cloud curve maximum. For densities below the critical value, we
observe that the phase behaviour is highly sensitive to the choice of upper
cutoff on the particle size distribution. We elucidate the origins of this
effect in terms of extremely pronounced fractionation effects and discuss the
likely appearance of new phases in the limit of very large values of the
cutoff.Comment: 12 pages, 15 figure
Fractionation effects in phase equilibria of polydisperse hard sphere colloids
The equilibrium phase behaviour of hard spheres with size polydispersity is
studied theoretically. We solve numerically the exact phase equilibrium
equations that result from accurate free energy expressions for the fluid and
solid phases, while accounting fully for size fractionation between coexisting
phases. Fluids up to the largest polydispersities that we can study (around
14%) can phase separate by splitting off a solid with a much narrower size
distribution. This shows that experimentally observed terminal polydispersities
above which phase separation no longer occurs must be due to non-equilibrium
effects. We find no evidence of re-entrant melting; instead, sufficiently
compressed solids phase separate into two or more solid phases. Under
appropriate conditions, coexistence of multiple solids with a fluid phase is
also predicted. The solids have smaller polydispersities than the parent phase
as expected, while the reverse is true for the fluid phase, which contains
predominantly smaller particles but also residual amounts of the larger ones.
The properties of the coexisting phases are studied in detail; mean diameter,
polydispersity and volume fraction of the phases all reveal marked
fractionation. We also propose a method for constructing quantities that
optimally distinguish between the coexisting phases, using Principal Component
Analysis in the space of density distributions. We conclude by comparing our
predictions to perturbative theories for near-monodisperse systems and to Monte
Carlo simulations at imposed chemical potential distribution, and find
excellent agreement.Comment: 21 pages, 23 figures, 2 table
Levantamento de reconhecimento dos solos da região sudeste do Estado do Paraná (áreas 4, 5 e 6).
bitstream/item/63300/1/BPD-13-2002-Parana-Sudeste-areas-4-5-6.pd
Equilibrium phase behavior of polydisperse hard spheres
We calculate the phase behavior of hard spheres with size polydispersity,
using accurate free energy expressions for the fluid and solid phases. Cloud
and shadow curves, which determine the onset of phase coexistence, are found
exactly by the moment free energy method, but we also compute the complete
phase diagram, taking full account of fractionation effects. In contrast to
earlier, simplified treatments we find no point of equal concentration between
fluid and solid or re-entrant melting at higher densities. Rather, the fluid
cloud curve continues to the largest polydispersity that we study (14%); from
the equilibrium phase behavior a terminal polydispersity can thus only be
defined for the solid, where we find it to be around 7%. At sufficiently large
polydispersity, fractionation into several solid phases can occur, consistent
with previous approximate calculations; we find in addition that coexistence of
several solids with a fluid phase is also possible
Guia para identificação dos principais solos do Estado do Paraná.
Conceitos e definições; Principais solos do Estado do Paraná.bitstream/item/36228/1/Guia-para-identificacao.pd
Caracterização dos solos do Município de Castro, PR.
O município de Castro, com uma superfície aproximada de 2.030km2, situa-se no Primeiro Planalto Paranaense, com uma pequena porção, a oeste da sede municipal, localizada no Segundo Planalto. O clima é do tipo Cfb, com precipitação da ordem de 1.400-1.600mm e com chuvas bem distribuídas durante o ano. O material de origem do solo está relacionado ao intemperismo de diferentes litologias, compreendendo desde granitos referidos ao Proterozóico/Paleozóico até arenitos da Formação Furnas, do Devoniano. Na porção sudeste da área, onde o relevo é mais vigoroso, a vegetação original predominante é do tipo floresta subtropical perenifólia, enquanto no restante da área predominava a vegetação de campo subtropical úmido. Ao todo foram estabelecidas 23 unidades de mapeamento, distribuídas pelas seguintes classes: Latossolos Brunos (13,77%), Latossolos Vermelhos (2,75%), Latossolos Vermelho-Amarelos (0,26%), Nitossolos Háplicos (25,39%), Cambissolos Háplicos (23,97%), Cambissolos Húmicos (2,71%), Organossolos Mésicos (15,14%) e Neossolos Litólicos + Afloramentos Rochosos (16,01%).bitstream/item/63306/1/BPD-09-2002-Parana-Castro.pd
Classificação e caracterização dos solos de testes de progenies de erva-mate (Ilex paraguariensis St. Hil.).
bitstream/CNPF-2009-09/16608/1/com_tec29.pd
- …