3,747 research outputs found

    Hadronic current correlation functions at finite temperature in the NJL model

    Full text link
    Recently there have been suggestions that for a proper description of hadronic matter and hadronic correlation functions within the NJL model at finite density/temperature the parameters of the model should be taken density/temperature dependent. Here we show that qualitatively similar results can be obtained using a cutoff-independent regularization of the NJL model. In this regularization scheme one can express the divergent parts at finite density/temperature of the amplitudes in terms of their counterparts in vacuum.Comment: Presented at 9th Hadron Physics and 8th Relativistic Aspects of Nuclear Physics (HADRON-RANP 2004): A Joint Meeting on QCD and QGP, Angra dos Reis, Rio de Janeiro, Brazil, 28 Mar - 3 Apr 200

    Cutoff-independent regularization of four-fermion interactions for color superconductivity

    Full text link
    We implement a cutoff-independent regularization of four-fermion interactions to calculate the color-superconducting gap parameter in quark matter. The traditional cutoff regularization has difficulties for chemical potentials \mu of the order of the cutoff \Lambda, predicting in particular a vanishing gap at \mu \sim \Lambda. The proposed cutoff-independent regularization predicts a finite gap at high densities and indicates a smooth matching with the weak coupling QCD prediction for the gap at asymptotically high densities.Comment: 5 pages, 1 eps figure - Revised manuscript to match the published pape

    Wavepacket scattering on graphene edges in the presence of a (pseudo) magnetic field

    Full text link
    The scattering of a Gaussian wavepacket in armchair and zigzag graphene edges is theoretically investigated by numerically solving the time dependent Schr\"odinger equation for the tight-binding model Hamiltonian. Our theory allows to investigate scattering in reciprocal space, and depending on the type of graphene edge we observe scattering within the same valley, or between different valleys. In the presence of an external magnetic field, the well know skipping orbits are observed. However, our results demonstrate that in the case of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an armchair edge results in a non-propagating edge state.Comment: 8 pages, 7 figure

    All-strain based valley filter in graphene nanoribbons using snake states

    Full text link
    A pseudo-magnetic field kink can be realized along a graphene nanoribbon using strain engineering. Electron transport along this kink is governed by snake states that are characterized by a single propagation direction. Those pseudo-magnetic fields point towards opposite directions in the K and K' valleys, leading to valley polarized snake states. In a graphene nanoribbon with armchair edges this effect results in a valley filter that is based only on strain engineering. We discuss how to maximize this valley filtering by adjusting the parameters that define the stress distribution along the graphene ribbon.Comment: 8 pages, 6 figure

    Wave packet dynamics and valley filter in strained graphene

    Full text link
    The time evolution of a wavepacket in strained graphene is studied within the tight-binding model and continuum model. The effect of an external magnetic field, as well as a strain-induced pseudo-magnetic field, on the wave packet trajectories and zitterbewegung are analyzed. Combining the effects of strain with those of an external magnetic field produces an effective magnetic field which is large in one of the Dirac cones, but can be practically zero in the other. We construct an efficient valley filter, where for a propagating incoming wave packet consisting of momenta around the K and K' Dirac points, the outgoing wave packet exhibits momenta in only one of these Dirac points, while the components of the packet that belong to the other Dirac point are reflected due to the Lorentz force. We also found that the zitterbewegung is permanent in time in the presence of either external or strain-induced magnetic fields, but when both the external and strain-induced magnetic fields are present, the zitterbewegung is transient in one of the Dirac cones, whereas in the other cone the wave packet exhibits permanent spatial oscillations.Comment: 13 pages, 10 figure

    Finite Temperature Phase Diagram of Quasi-Two-Dimensional Imbalanced Fermi Gases Beyond Mean-Field

    Full text link
    We investigate the superfluid transition temperature of quasi-two-dimensional imbalanced Fermi gases beyond the mean-field approximation, through the second-order (or induced) interaction effects. For a balanced Fermi system the transition temperature is suppressed by a factor ≈2.72\approx 2.72. For imbalanced Fermi systems, the polarization and transition temperature of the tricritical point are significantly reduced as the two-body binding energy ∣ϵB∣|\epsilon_B| increases.Comment: 6 pages, 3 figure

    Conditions for non-monotonic vortex interaction in two-band superconductors

    Full text link
    We describe a semi-analytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain - superconductor interface energy, in analogy with the conventional differentiation between type-I and type-II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ∗\kappa^*, different from the standard κ\kappa of a bulk superconductor. This opens the possibility for non-monotonic vortex-vortex interaction, which is temperature-dependent, and can be further tuned by alterations of the material on the microscopic scale
    • …
    corecore