3 research outputs found
Number--conserving model for boson pairing
An independent pair ansatz is developed for the many body wavefunction of
dilute Bose systems. The pair correlation is optimized by minimizing the
expectation value of the full hamiltonian (rather than the truncated Bogoliubov
one) providing a rigorous energy upper bound. In contrast with the Jastrow
model, hypernetted chain theory provides closed-form exactly solvable equations
for the optimized pair correlation. The model involves both condensate and
coherent pairing with number conservation and kinetic energy sum rules
satisfied exactly and the compressibility sum rule obeyed at low density. We
compute, for bulk boson matter at a given density and zero temperature, (i) the
two--body distribution function, (ii) the energy per particle, (iii) the sound
velocity, (iv) the chemical potential, (v) the momentum distribution and its
condensate fraction and (vi) the pairing function, which quantifies the ODLRO
resulting from the structural properties of the two--particle density matrix.
The connections with the low--density expansion and Bogoliubov theory are
analyzed at different density values, including the density and scattering
length regime of interest of trapped-atoms Bose--Einstein condensates.
Comparison with the available Diffusion Monte Carlo results is also made.Comment: 21 pages, 12 figure