120 research outputs found

    AETC: a powerful web tool to simulate astronomical images

    Get PDF
    We present the capabilities of the Advanced Exposure Time Calculator (AETC), a tool, publicly available via web interface (http://aetc.oapd.inaf.it/), aimed to simulate astronomical images obtained with any (given) telescope and instrument combination. The tool includes the possibility of providing an accurate modelling of PSF variations in the FoV, a crucial issue for realistic simulations, which makes AETC particularly suitable for simulations of adaptive optics instruments. To exemplify the AETC capabilities we present a number of simulations for specific science cases, useful for studying the capabilities of next generation AO imaging cameras for Extremely Large Telescopes. <P /

    Properties of high z galaxies in the ELTs era

    Get PDF
    The extraordinary sensitivity and spatial resolution of the future extremely large telescopes will allow us to extensively characterize the photometrical and structural properties of high redshift galaxies in spite of their very small size. With such future facilities it will be possible to derive both accurate photometry and detailed morphology of very distant galaxies that are mandatory to tackle fundamental problems on the processes of galaxy formation and evolution

    Exploring the stellar populations of nearby and high redshift galaxies with ELTs

    Get PDF
    The high sensitivity and spatial resolution of future ELTs facilities will offer the unique opportunity to probe directly the stellar populations of the very inner regions of galaxies in the local Universe and to derive morphological and photometric information for high redshift galaxies. We present our project aimed at assessing the expected capabilities of ELTs in the study of nearby and high-redshift stellar populations. To this end, we simulated imaging observations of different stellar populations in the local Universe and in high-redhshift galaxies with the MICADO camera at the E-ELT. Detailed photometric analyses of these images were used to probe the feasibility of science cases dealing with photometry of resolved stars in crowded fields, and with surface photometry of distant galaxies. We find that the future facilities will allow us to greatly improve our knowledge of the stellar populations in galaxies, especially in the innermost and most crowded regions. Accurate photometry of turn-off stars in nuclear star clusters of intermediate age will be possible up to distances of ̃ 3 Mpc. The exquisite spacial resolution will also drive great progress in unresolved stellar populations studies, enabling the detailed measurement of structural parameters, colour profiles, and the detection of signature of star formation sub-structures in galaxies at redshifts up to z=3. <P /

    CCDs for the instrumentation of the Telescopio Nazionale Galileo

    Get PDF
    Most of the scientific instrumentation as well as the tracking systems and the Shack-Hartmann wavefront analysers at the Italian National Telescope Galileo use CCDs as detectors. The characterization of detectors is of fundamental importance for their correct utilization in scientific instrumentation. We report on the measurement of the electro-optical characteristics of CCDs that will be used in the scientific instrumentation at the Italian National Telescope. In particular we will show and compare the quantum efficiency, the charge transfer efficiency, the dark current, the read out noise, the uniformity and the linearity of two sets of CCDs manufactured by EEV and LORAL. Finally, we will show the preliminary tests done at the telescope with the optical imager that has a mosaic of two EEV chips

    The optical imager Galileo (OIG)

    Get PDF
    The present paper describes the construction, the installationand the operation of the Optical Imager Galileo (OIG), a scientific instrument dedicated to the 'imaging' in the visible

    MITS: the Multi-Imaging Transient Spectrograph for SOXS

    Get PDF
    The Son Of X-Shooter (SOXS) is a medium resolution spectrograph R~4500 proposed for the ESO 3.6 m NTT. We present the optical design of the UV-VIS arm of SOXS which employs high efficiency ion-etched gratings used in first order (m=1) as the main dispersers. The spectral band is split into four channels which are directed to individual gratings, and imaged simultaneously by a single three-element catadioptric camera. The expected throughput of our design is >60% including contingency. The SOXS collaboration expects first light in early 2021. This paper is one of several papers presented in these proceedings describing the full SOXS instrument

    Optical design of the SOXS spectrograph for ESO NTT

    Full text link
    An overview of the optical design for the SOXS spectrograph is presented. SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500) spectrograph for the ESO 3.58m NTT telescope expected to start observations in 2021 at La Silla. The spectroscopic capabilities of SOXS are assured by two different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR (800- 2000 nm) arm adopts the '4C' design (Collimator Correction of Camera Chromatism) successfully applied in X-Shooter. Other optical sub-systems are the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common Path. We describe the optical design of the five sub-systems and report their performance in terms of spectral format, throughput and optical quality. This work is part of a series of contributions describing the SOXS design and properties as it is about to face the Final Design Review.Comment: 9 pages, 9 figures, published in SPIE Proceedings 1070

    The VIS detector system of SOXS

    Get PDF
    SOXS will be a unique spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands thanks to two different arms: the UV-VIS (350-850 nm), and the NIR (800-1800 nm). In this article, we describe the design of the visible camera cryostat and the architecture of the acquisition system. The UV-VIS detector system is based on a e2v CCD 44-82, a custom detector head coupled with the ESO continuous ow cryostats (CFC) cooling system and the NGC CCD controller developed by ESO. This paper outlines the status of the system and describes the design of the different parts that made up the UV-VIS arm and is accompanied by a series of contributions describing the SOXS design solutions.Comment: 9 pages, 13 figures, to be published in SPIE Proceedings 1070

    The Acquisition Camera System for SOXS at NTT

    Full text link
    SOXS (Son of X-Shooter) will be the new medium resolution (R\sim4500 for a 1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT telescope on La Silla. It will be able to cover simultaneously optical and NIR bands (350-2000nm) using two different arms and a pre-slit Common Path feeding system. SOXS will provide an unique facility to follow up any kind of transient event with the best possible response time in addition to high efficiency and availability. Furthermore, a Calibration Unit and an Acquisition Camera System with all the necessary relay optics will be connected to the Common Path sub-system. The Acquisition Camera, working in optical regime, will be primarily focused on target acquisition and secondary guiding, but will also provide an imaging mode for scientific photometry. In this work we give an overview of the Acquisition Camera System for SOXS with all the different functionalities. The optical and mechanical design of the system are also presented together with the preliminary performances in terms of optical quality, throughput, magnitude limits and photometric properties.Comment: 9 pages, 7 figures, SPIE conferenc
    corecore