20 research outputs found

    A neutronradiography facility based on an experimental reactor

    Get PDF
    A thermal Neutron Radiography (NR) facility based on the use of thermal neutron flux, generated by the PULSTAR experimental reactor, has been designed and simulated using the MCNPX code. The key objective of the proposed facility is to deliver thermal neutron flux in this range for variable values of L/D ratio, instantaneously with acceptable values for all NR parameters. Thus, with suitable aperture and collimators designs, optimization for the parameters for thermal NR was achieved, for a wide range of the collimator ratio. The short time requirements for obtaining the radiography images justify the use of the proposed system for ‘real time radiography’. The system was designed under the limitation that the total Dose Equivalent Rate does not exceed at the external shield surface the limit recommended by ICRP-26.JRC.F.4-Innovative Technologies for Nuclear Reactor Safet

    Non destructive testing of medium and high voltage cables with a transportable radiography system

    Get PDF
    A power cable is the most important part in a power transmission system. The cables must be total quality dedicated andcertified for development, manufacturing and installation, however are exposed to a corrosive environment. The purpose ofthis paper is to show that the fast neutron radiography with a transportable system is a solution to find defects in the cablesand reduce the cost of inspection. The design, regarding the materials considered, was compatible with the European UnionDirective on “Restriction of Hazardous Substances” (RoHS) 2002/95/EC, hence excluding the use of cadmium and lead.Wide width values for the collimator ratio were calculated. With suitable collimator design it was possibly to optimize theneutron radiography parameters. Finally the shielding design was examined closely. The proposed system has been simulatedusing the MCNPX code

    Study of a Wind/PV/Battery hybrid system – Case study at Plaka in Greece

    Get PDF
    The primary objective of this study is to determine the optimum hybrid system able to supply the necessary electrical load of a typical community in a remote location in Greece. The renewable energy systems were comprised of different combinations of PV modules and wind turbines supplemented with battery storage. A software tool, HOMER is used for the analysis. The hybrid system analysis has showed that the minimum cost of energy is 0.268 $/kWh with 10% annual capacity of shortage. The optimum hybrid system is comprised of 1.5 kW PV array, 1 wind generator, 3 kW power converter and 14 storage batteries

    A multivariate analysis of serum nutrient levels and lung function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is mounting evidence that estimates of intakes of a range of dietary nutrients are related to both lung function level and rate of decline, but far less evidence on the relation between lung function and objective measures of serum levels of individual nutrients. The aim of this study was to conduct a comprehensive examination of the independent associations of a wide range of serum markers of nutritional status with lung function, measured as the one-second forced expiratory volume (FEV<sub>1</sub>).</p> <p>Methods</p> <p>Using data from the Third National Health and Nutrition Examination Survey, a US population-based cross-sectional study, we investigated the relation between 21 serum markers of potentially relevant nutrients and FEV<sub>1</sub>, with adjustment for potential confounding factors. Systematic approaches were used to guide the analysis.</p> <p>Results</p> <p>In a mutually adjusted model, higher serum levels of antioxidant vitamins (vitamin A, beta-cryptoxanthin, vitamin C, vitamin E), selenium, normalized calcium, chloride, and iron were independently associated with higher levels of FEV<sub>1</sub>. Higher concentrations of potassium and sodium were associated with lower FEV<sub>1</sub>.</p> <p>Conclusion</p> <p>Maintaining higher serum concentrations of dietary antioxidant vitamins and selenium is potentially beneficial to lung health. In addition other novel associations found in this study merit further investigation.</p

    11β-hydroxysteroid dehydrogenase type 2 deficiency accelerates atherogenesis and causes proinflammatory changes in the endothelium in apoe<sup>-/-</sup> mice

    Get PDF
    Mineralocorticoid receptor (MR) activation is pro inflammatory and pro atherogenic. Antagonism of MR improves survival in humans with congestive heart failure caused by atherosclerotic disease. In animal models, activation of MR exacerbates atherosclerosis. The enzyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) prevents inappropriate activation of the mineralocorticoid receptor (MR) from inappropriate activation by glucocorticoids by inactivating glucocorticoids in mineralocorticoid-target tissues. To determine whether glucocorticoid-mediated activation of MR increases atheromatous plaque formation we generated Apoe(−/−)/11β-HSD2(−/−) double-knockout (E/b2) mice. On chow diet, E/b2 mice developed atherosclerotic lesions by 3 months of age, while Apoe(−/−) mice remained lesion-free. Brachiocephalic plaques in 3 month-old E/b2 mice showed increased macrophage and lipid content and reduced collagen content compared to similar sized brachiocephalic plaques in 6 month old Apoe(−/−) mice. Crucially, treatment of E/b2 mice with eplerenone, an MR antagonist, reduced plaque development and macrophage infiltration while increasing collagen and smooth muscle cell content without any effect on systolic blood pressure (SBP). In contrast, reduction of SBP in E/b2 mice using the epithelial sodium channel (ENaC) blocker amiloride produced a less profound atheroprotective effect. Vascular cell adhesion molecule 1 (VCAM-1) expression was increased in the endothelium of E/b2 mice compared to Apoe(−/−) mice. Similarly, aldosterone increased VCAM-1 expression in mouse aortic endothelial cells, an effect mimicked by corticosterone only in the presence of an 11β-HSD2 inhibitor. Thus, loss of 11β-HSD2 leads to striking atherogenesis associated with activation of MR stimulating pro-inflammatory processes in the endothelium of E/b2 mice

    Divergent Regulation of Actin Dynamics and Megakaryoblastic Leukemia-1 and -2 (Mkl1/2) by cAMP in Endothelial and Smooth Muscle Cells.

    Get PDF
    Proliferation and migration of vascular smooth muscle cells (VSMCs) or endothelial cell (ECs) promote or inhibit, respectively, restenosis after angioplasty, vein graft intimal thickening and atherogenesis. Here we investigated the effects of cAMP-induced cytoskeletal remodelling on the serum response factor (SRF) co-factors Megakaryoblastic Leukemia-1 and -2 (MKL1 and MKL2) and their role in controlling VSMC and EC proliferation and migration. Elevation of cAMP using forskolin, dibutyryl-cAMP (db-cAMP), BAY60-6583 or Cicaprost induced rapid cytoskeleton remodelling and inhibited proliferation and migration in VSMCs but not EC. Furthermore, elevated cAMP inhibited mitogen-induced nuclear-translocation of MKL1 and MKL2 in VSMCs but not ECs. Forskolin also significantly inhibited serum response factor (SRF)-dependent reporter gene (SRE-LUC) activity and mRNA expression of pro-proliferative and pro-migratory MKL1/2 target genes in VSMCs but not in ECs. In ECs, MKL1 was constitutively nuclear and MKL2 cytoplasmic, irrespective of mitogens or cAMP. Pharmacological or siRNA inhibition of MKL1 significantly inhibited the proliferation and migration of VSMC and EC. Our new data identifies and important contribution of MKL1/2 to explaining the strikingly different response of VSMCs and ECs to cAMP elevation. Elucidation of these pathways promises to identify targets for specific inhibition of VSMC migration and proliferation

    A neutronradiography facility based on an experimental reactor

    Full text link
    A thermal Neutron Radiography (NR) facility based on the use of thermal neutron flux, generated by the PULSTAR experimental reactor, has been designed and simulated using the MCNPX code. The key objective of the proposed facility is to deliver thermal neutron flux in this range for variable values of L/D ratio, instantaneously with acceptable values for all NR parameters. Thus, with suitable aperture and collimators designs, optimization for the parameters for thermal NR was achieved, for a wide range of the collimator ratio. The short time requirements for obtaining the radiography images justify the use of the proposed system for ‘real time radiography’. The system was designed under the limitation that the total Dose Equivalent Rate does not exceed at the external shield surface the limit recommended by ICRP-26

    Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    Get PDF
    Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find defects in the wind turbine blade and reduce the cost of inspection. A transportable neutron radiography system, incorporating an Sb–Be source, has been simulated using the MCNPX code. The simulated system has a wide range of radiography parameters
    corecore