205 research outputs found
Reversible Inhibition of Tomato Fruit Gene Expression at High Temperature (Effects on Tomato Fruit Ripening)
Photoselective shade nets reducing postharvest decay development in pepper fruits
During two-year studies, we evaluated the influence of photoselective coloured shade nets on the quality of fresh harvested pepper fruits (Capsicum annuum) after prolonged storage and shelf life simulation. Pepper cultivar ‘Romans’ grown in a semi arid region under 35% pearl and yellow shade nets significantly maintained better pepper fruit quality after 16 days at 7°C plus three days at 20°C, mainly by reducing decay incidence during two consecutive years (2008 and 2009), compared to commercial black and red nets. No significant differences were observed in percentage of weight loss, firmness and total soluble solids in fruit harvested under the different coloured shade nets. The skin colour of fruit harvested under Pearl net was significantly lighter than that of fruit harvested under red and black shade nets and this fact can be associated with inhibition of fruit ripening during growth. After storability and shelf life simulation however skin colour was red to dark red under all shade nets. Pearl and yellow shade nets significantly reduced Alternaria spp. population in the field, which was evaluated with Alternaria-selective growing medium. The highest Alternaria population was found under red shade net. The significant low decay incidence in fruit harvested under pearl and yellow shade nets can be explained by the low inoculum level of Alternaria spp. in the field, and inhibition of fungal sporulation, and/or by a slowing of fruit ripening during its growth, reducing fruit susceptibility to fungal infection in the field due to the scattered light, its quality and the ratio between the light spectrum under the two shade nets
Recommended from our members
Azotobacter genomes: the genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412)
The genome of the soil-dwelling heterotrophic N2-fixing Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 (ATCC 4412) (Ac-8003) has been determined. It consists of 7 circular replicons totalling 5,192,291 bp comprising a circular chromosome of 4,591,803 bp and six plasmids pAcX50a, b, c, d, e, f of 10,435 bp, 13,852, 62,783, 69,713, 132,724, and 311,724 bp respectively. The chromosome has a G+C content of 66.27% and the six plasmids have G+C contents of 58.1, 55.3, 56.7, 59.2, 61.9, and 62.6% respectively. The methylome has also been determined and 5 methylation motifs have been identified. The genome also contains a very high number of transposase/inactivated transposase genes from at least 12 of the 17 recognised insertion sequence families. The Ac-8003 genome has been compared with that of Azotobacter vinelandii ATCC BAA-1303 (Av-DJ), a derivative of strain O, the only other member of the Azotobacteraceae determined so far which has a single chromosome of 5,365,318 bp and no plasmids. The chromosomes show significant stretches of synteny throughout but also reveal a history of many deletion/insertion events. The Ac-8003 genome encodes 4628 predicted protein-encoding genes of which 568 (12.2%) are plasmid borne. 3048 (65%) of these show > 85% identity to the 5050 protein-encoding genes identified in Av-DJ, and of these 99 are plasmid-borne. The core biosynthetic and metabolic pathways and macromolecular architectures and machineries of these organisms appear largely conserved including genes for CO-dehydrogenase, formate dehydrogenase and a soluble NiFe-hydrogenase. The genetic bases for many of the detailed phenotypic differences reported for these organisms have also been identified. Also many other potential phenotypic differences have been uncovered. Properties endowed by the plasmids are described including the presence of an entire aerobic corrin synthesis pathway in pAcX50f and the presence of genes for retro-conjugation in pAcX50c. All these findings are related to the potentially different environmental niches from which these organisms were isolated and to emerging theories about how microbes contribute to their communities
Microsatellite instability due to hMLH1 deficiency is associated with increased cytotoxicity to irinotecan in human colorectal cancer cell lines
Around 15% of colorectal cancers (CRCs) show microsatellite instability (MSI) due to dysfunction of the mismatch repair system (MMR). As a consequence of this, MSI tumours tend to accumulate errors in mononucleotide repeats as those in genes implicated in repairing double-strand breaks (DSBs). Previous studies have shown that irinotecan (CPT-11), a chemotherapy agent inducing DSB, is more active in MSI than in microsatellite stable (MSS) CRC. The purpose of this study was to compare the sensitivity to CPT-11 in a series of CRC cell lines with either proficient or deficient MMR and to assess the mutational status of two DSB repair genes, MRE11 and RAD50, in these cell lines. hMLH1-deficient cell lines due to either epigenetic silencing or mutation showed very similar IC50 and were four- to nine-fold more sensitive to CPT-11 than the MSS line. Cell lines harbouring mutations in both MRE11 and RAD50 were most sensitive to CPT-11. We conclude that MSI cell lines display higher sensitivity to CPT-11 than MSS cells. Mutation of MRE11 and RAD50 could account for this difference in response to CPT-11. Future clinical trials tailoring chemotherapy regimens based on microsatellite status are warranted
Produção, caracterização e aplicação de anticorpo policlonal contra Azospirillum amazonense estirpe Am15
Effect of prestorage curing on storage life, internal and external qualities of sweet orange (Citrus sinensis)
Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications
Manejo do resfriamento e da classificação de pêssegos cv granada na ocorrência de podridões e qualidade de consumo
The effectiveness of growth cycles on improving fruit quality for grafted watermelon combinations
- …
