138 research outputs found
Baikal-GVD: status and prospects
Baikal-GVD is a next generation, kilometer-scale neutrino telescope under
construction in Lake Baikal. It is designed to detect astrophysical neutrino
fluxes at energies from a few TeV up to 100 PeV. GVD is formed by multi-megaton
subarrays (clusters). The array construction started in 2015 by deployment of a
reduced-size demonstration cluster named "Dubna". The first cluster in its
baseline configuration was deployed in 2016, the second in 2017 and the third
in 2018. The full scale GVD will be an array of ~10000 light sensors with an
instrumented volume of about 2 cubic km. The first phase (GVD-1) is planned to
be completed by 2020-2021. It will comprise 8 clusters with 2304 light sensors
in total. We describe the design of Baikal-GVD and present selected results
obtained in 2015-2017.Comment: 9 pages, 8 figures. Conference proceedings for QUARKS201
Studies of the ambient light of deep Baikal waters with Baikal-GVD
The Baikal-GVD neutrino detector is a deep-underwater neutrino telescope
under construction and recently after the winter 2023 deployment it consists of
3456 optical modules attached on 96 vertical strings. This 3-dimensional array
of photo-sensors allows to observe ambient light in the vicinity of the
Baikal-GVD telescope that is associated mostly with water luminescence. Results
on time and space variations of the luminescent activity are reviewed based on
data collected in 2018-2022
Large neutrino telescope Baikal-GVD: recent status
The Baikal-GVD is a deep-underwater neutrino telescope being constructed in
Lake Baikal. After the winter 2023 deployment campaign the detector consists of
3456 optical modules installed on 96 vertical strings. The status of the
detector and progress in data analysis are discussed in present report. The
Baikal-GVD data collected in 2018-2022 indicate the presence of cosmic neutrino
flux in high-energy cascade events consistent with observations by the IceCube
neutrino telescope. Analysis of track-like events results in identification of
first high-energy muon neutrino candidates. These and other results from
2018-2022 data samples are reviewed in this report
Monitoring of optical properties of deep waters of Lake Baikal in 2021-2022
We present the results of the two-year (2021-2022) monitoring of absorption
and scattering lengths of light with wavelength 400-620 nm within the effective
volume of the deep underwater neutrino telescope Baikal-GVD, which were
measured by a device Baikal-5D No.2. The Baikal-5D No.2. was installed during
the 2021 winter expedition at a depth of 1180 m. The absorption and scattering
lengths were measured every week in 9 spectral points. The device Baikal-5D
No.2 also has the ability to measure detailed scattering and absorption
spectra. The data obtained make it possible to estimate the range of changes in
the absorption and scattering lengths over a sufficiently long period of time
and to investigate the relationship between the processes of changes in
absorption and scattering. An analysis was made of changes in absorption and
scattering spectra for the period 2021-2022
Search for directional associations between Baikal Gigaton Volume Detector neutrino-induced cascades and high-energy astrophysical sources
Baikal-GVD has recently published its first measurement of the diffuse
astrophysical neutrino flux, performed using high-energy cascade-like events.
We further explore the Baikal-GVD cascade dataset collected in 2018-2022, with
the aim to identify possible associations between the Baikal-GVD neutrinos and
known astrophysical sources. We leverage the relatively high angular resolution
of the Baikal-GVD neutrino telescope (2-3 deg.), made possible by the use of
liquid water as the detection medium, enabling the study of astrophysical point
sources even with cascade events. We estimate the telescope's sensitivity in
the cascade channel for high-energy astrophysical sources and refine our
analysis prescriptions using Monte-Carlo simulations. We primarily focus on
cascades with energies exceeding 100 TeV, which we employ to search for
correlation with radio-bright blazars. Although the currently limited neutrino
sample size provides no statistically significant effects, our analysis
suggests a number of possible associations with both extragalactic and Galactic
sources. Specifically, we present an analysis of an observed triplet of
neutrino candidate events in the Galactic plane, focusing on its potential
connection with certain Galactic sources, and discuss the coincidence of
cascades with several bright and flaring blazars.Comment: 10 pages, 3 figure
Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector
We present results from a search for neutrinoless double-β (0νββ) decay using 36.6 g of the isotope
150Nd with data corresponding to a live time of 5.25 y recorded with the NEMO-3 detector. We construct a
complete background model for this isotope, including a measurement of the two-neutrino double-β decay
half-life of T2ν
1=2 ¼ ½9.34 0.22ðstatÞ þ0.62 −0.60 ðsystÞ × 1018 y for the ground state transition, which represents
the most precise result to date for this isotope. We perform a multivariate analysis to search for 0νββ decays
in order to improve the sensitivity and, in the case of observation, disentangle the possible underlying decay
mechanisms. As no evidence for 0νββ decay is observed, we derive lower limits on half-lives for several mechanisms involving physics beyond the standard model. The observed lower limit, assuming light
Majorana neutrino exchange mediates the decay, is T0ν
1=2 > 2.0 × 1022 y at the 90% C.L., corresponding to
an upper limit on the effective neutrino mass of hmνi < 1.6–5.3 eV
Development of methods for the preparation of radiopure <sup>82</sup>Se sources for the SuperNEMO neutrinoless double-beta decay experiment
A radiochemical method for producing 82Se sources with an ultra-low level of contamination of natural radionuclides (40K, decay products of 232Th and 238U) has been developed based on cation-exchange chromatographic purification with reverse removal of impurities. It includes chromatographic separation (purification), reduction, conditioning (which includes decantation, centrifugation, washing, grinding, and drying), and 82Se foil production. The conditioning stage, during which highly dispersed elemental selenium is obtained by the reduction of purified selenious acid (H2SeO3) with sulfur dioxide (SO2) represents the crucial step in the preparation of radiopure 82Se samples. The natural selenium (600 g) was first produced in this procedure in order to refine the method. The technique developed was then used to produce 2.5 kg of radiopure enriched selenium (82Se). The produced 82Se samples were wrapped in polyethylene (12 μm thick) and radionuclides present in the sample were analyzed with the BiPo-3 detector. The radiopurity of the plastic materials (chromatographic column material and polypropylene chemical vessels), which were used at all stages, was determined by instrumental neutron activation analysis. The radiopurity of the 82Se foils was checked by measurements with the BiPo-3 spectrometer, which confirmed the high purity of the final product. The measured contamination level for 208Tl was 8-54 μBq/kg, and for 214Bi the detection limit of 600 μBq/kg has been reached.</p
LEGEND-1000 Preconceptual Design Report
We propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It consists of 1000 kg of Ge detectors enriched to more than 90% in the Ge isotope operated in a liquid argon active shield at a deep underground laboratory. By combining the lowest background levels with the best energy resolution in the field, LEGEND-1000 will perform a quasi-background-free search and can make an unambiguous discovery of neutrinoless double-beta decay with just a handful of counts at the decay value. The experiment is designed to probe this decay with a 99.7%-CL discovery sensitivity in the Ge half-life of years, corresponding to an effective Majorana mass upper limit in the range of 9-21 meV, to cover the inverted-ordering neutrino mass scale with 10 yr of live time
- …