3,874 research outputs found

    Vibrational excitation of diatomic molecular ions in strong-field ionization of diatomic molecules

    Full text link
    A model based on the strong-field and Born-Oppenheimer approximations qualitatively describes the distribution over vibrational states formed in a diatomic molecular ion following ionization of the neutral molecule by intense laser pulses. Good agreement is found with a recent experiment [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004)]. In particular, the observed deviation from a Franck-Condon-like distribution is reproduced. Additionally, we demonstrate control of the vibrational distribution by a variation of the peak intensity or a change of frequency of the laser pulse.Comment: 4 pages, 4 figure

    Quantum Noise in Multipixel Image Processing

    Full text link
    We consider the general problem of the quantum noise in a multipixel measurement of an optical image. We first give a precise criterium in order to characterize intrinsic single mode and multimode light. Then, using a transverse mode decomposition, for each type of possible linear combination of the pixels' outputs we give the exact expression of the detection mode, i.e. the mode carrying the noise. We give also the only way to reduce the noise in one or several simultaneous measurements.Comment: 8 pages and 1 figur

    Ultra-low threshold CW Triply Resonant OPO in the near infrared using Periodically Poled Lithium Niobate

    Get PDF
    We have operated a CW triply resonant OPO using a PPLN crystal pumped by a Nd:YAG laser at 1.06 micron and generating signal and idler modes in the 2-2.3 micron range. The OPO was operated stably in single mode operation over large periods of time with a pump threshold as low as 500 microwatts.Comment: 7 pages, 5 figures, submitted to JEOS

    Entanglement measurement of the quadrature components without the homodyne detection in the spatially multi-mode far-field

    Full text link
    We consider the measuring procedure that in principle allows to avoid the homodyne detection for the simultaneous selection of both quadrature components in the far-field. The scheme is based on the use of the coherent sources of the non-classical light. The possibilities of the procedure are illustrated on the basis of the use of pixellised sources, where the phase-locked sub-Poissonian lasers or the degenerate optical parametric oscillator generating above threshold are chosen as the pixels. The theory of the pixellised source of the spatio-temporal squeezed light is elaborated as a part of this investigation.Comment: 11 pages, 5 figures, RevTeX4. Submitted to Phys. Rev.

    Image transmission through a stable paraxial cavity

    Full text link
    We study the transmission of a monochromatic "image" through a paraxial cavity. Using the formalism of self-transform functions, we show that a transverse degenerate cavity transmits the self-transform part of the image, with respect to the field transformation over one round-trip of the cavity. This formalism gives a new insight on the understanding of the behavior of a transverse degenerate cavity, complementary to the transverse mode picture. An experiment of image transmission through a hemiconfocal cavity show the interest of this approach.Comment: submitted to Phys. Rev.

    Synchronization of organ pipes: experimental observations and modeling

    Full text link
    We report measurements on the synchronization properties of organ pipes. First, we investigate influence of an external acoustical signal from a loudspeaker on the sound of an organ pipe. Second, the mutual influence of two pipes with different pitch is analyzed. In analogy to the externally driven, or mutually coupled self-sustained oscillators, one observes a frequency locking, which can be explained by synchronization theory. Further, we measure the dependence of the frequency of the signals emitted by two mutually detuned pipes with varying distance between the pipes. The spectrum shows a broad ``hump'' structure, not found for coupled oscillators. This indicates a complex coupling of the two organ pipes leading to nonlinear beat phenomena.Comment: 24 pages, 10 Figures, fully revised, 4 big figures separate in jpeg format. accepted for Journal of the Acoustical Society of Americ

    Covariant Quark Model for the Baryons

    Get PDF
    A family of simply solvable covariant quark models for the baryons is presented. With optimal parameter choices the models reproduce the empirical spectra of the baryons in all flavor sectors to an accuracy of a few percent. Complete spectra are obtained for all states of the strange, charm and beauty hyperons with L≤2L \leq 2. The magnetic moments and axial coupling constants of the ground state baryons correspond to those of conventional quark models. We construct current-density operators that are consistent with empirical nucleon form factors at low and medium energies.Comment: 32pages, LateX, 3 figures(postscript

    Multimode Squeezing Properties of a Confocal Opo: Beyond the Thin Crystal Approximation

    Full text link
    Up to now, transverse quantum effects (usually labelled as "quantum imaging" effects) which are generated by nonlinear devices inserted in resonant optical cavities have been calculated using the "thin crystal approximation", i.e. taking into account the effect of diffraction only inside the empty part of the cavity, and neglecting its effect in the nonlinear propagation inside the nonlinear crystal. We introduce in the present paper a theoretical method which is not restricted by this approximation. It allows us in particular to treat configurations closer to the actual experimental ones, where the crystal length is comparable to the Rayleigh length of the cavity mode. We use this method in the case of the confocal OPO, where the thin crystal approximation predicts perfect squeezing on any area of the transverse plane, whatever its size and shape. We find that there exists in this case a "coherence length" which gives the minimum size of a detector on which perfect squeezing can be observed, and which gives therefore a limit to the improvement of optical resolution that can be obtained using such devices.Comment: soumis le 04.03.2005 a PR

    Nano-displacement measurements using spatially multimode squeezed light

    Full text link
    We demonstrate the possibility of surpassing the quantum noise limit for simultaneous multi-axis spatial displacement measurements that have zero mean values. The requisite resources for these measurements are squeezed light beams with exotic transverse mode profiles. We show that, in principle, lossless combination of these modes can be achieved using the non-degenerate Gouy phase shift of optical resonators. When the combined squeezed beams are measured with quadrant detectors, we experimentally demonstrate a simultaneous reduction in the transverse x- and y- displacement fluctuations of 2.2 dB and 3.1 dB below the quantum noise limit.Comment: 21 pages, 9 figures, submitted to "Special Issue on Fluctuations & Noise in Photonics & Quantum Optics" of J. Opt.
    • …
    corecore