207 research outputs found

    Instrumentation and Future Missions in the Upcoming Era of X-Ray Polarimetry

    Full text link
    The maturity of current detectors based on technologies that range from solid state to gases renewed the interest for X-ray polarimetry, raising the enthusiasm of a wide scientific community to improve the performance of polarimeters as well as to produce more detailed theoretical predictions. We will introduce the basic concepts about measuring the polarization of photons, especially in the X-rays, and we will review the current state of the art of polarimeters in a wide energy range from soft~to hard X-rays, from solar flares to distant astrophysical sources. We will introduce relevant examples of polarimeters developed from the recent past up to the panorama of upcoming space missions to show how the recent development of the technology is allowing reopening the observational window of X-ray polarimetry

    Probing magnetars magnetosphere through X-ray polarization measurements

    Full text link
    The study of magnetars is of particular relevance since these objects are the only laboratories where the physics in ultra-strong magnetic fields can be directly tested. Until now, spectroscopic and timing measurements at X-ray energies in soft gamma-repeaters (SGRs) and anomalous X-ray pulsar (AXPs) have been the main source of information about the physical properties of a magnetar and of its magnetosphere. Spectral fitting in the ~ 0.5-10 keV range allowed to validate the "twisted magnetosphere" model, probing the structure of the external field and estimating the density and velocity of the magnetospheric currents. Spectroscopy alone, however, may fail in disambiguating the two key parameters governing magnetospheric scattering (the charge velocity and the twist angle) and is quite insensitive to the source geometry. X-ray polarimetry, on the other hand, can provide a quantum leap in the field by adding two extra observables, the linear polarization degree and the polarization angle. Using the bright AXP 1RXS J170849.0-400910 as a template, we show that phase-resolved polarimetric measurements can unambiguously determine the model parameters, even with a small X-ray polarimetry mission carrying modern photoelectric detectors and existing X-ray optics. We also show that polarimetric measurements can pinpoint vacuum polarization effects and thus provide an indirect evidence for ultra-strong magnetic fields.Comment: 12 pages, 8 figures, accepted for publication in MNRA

    Correlation methods for the analysis of X-ray polarimetric signals

    Get PDF
    X-ray polarimetric measurements are based on studying the distribution of the directions of scattered photons or photoelectrons and on the search of a sinusoidal modulation with a period of {\pi}. We developed two tools for investigating these angular distributions based on the correlations between counts in phase bins separated by fixed phase distances. In one case we use the correlation between data separated by half of the bin number (one period) which is expected to give a linear pattern. In the other case, the scatter plot obtained by shifting by 1/8 of the bin number (1/4 of period) transforms the sinusoid in a circular pattern whose radius is equal to the amplitude of the modulation. For unpolarized radiation these plots are reduced to a random point distribution centred at the mean count level. This new methods provide direct visual and simple statistical tools for evaluating the quality of polarization measurements and for estimating the polarization parameters. Furthermore they are useful for investigating distortions due to systematic effects

    A Study of background for IXPE

    Get PDF
    Focal plane X-ray polarimetry is intended for relatively bright sources with a negligible impact of background. However this might not be always possible for IXPE (Imaging X-ray Polarimetry Explorer) when observing faint extended sources like supernova remnants. We present for the first time the expected background of IXPE by Monte Carlo simulation and its impact on real observations of point and extended X-ray sources. The simulation of background has been performed by Monte Carlo based on GEANT4 framework. The spacecraft and the detector units have been modeled, and the expected background components in IXPE orbital environment have been evaluated. We studied different background rejection techniques based on the analysis of the tracks collected by the Gas Pixel Detectors on board IXPE. The estimated background is about 2.9 times larger than the requirement, yet it is still negligible when observing point like sources. Albeit small, the impact on supernova remnants indicates the need for a background subtraction for the observation of the extended sources.Comment: 16 pages, 16 figure
    • …
    corecore