4,029 research outputs found

    The relativistic Iron K-alpha line from an accretion disc onto a static non-baryonic compact object

    Full text link
    This paper continues the study of the properties of an accretion disc rotating around a non-baryonic (assumed super-massive) compact object. This kind of objects, generically known as boson stars, were earlier proposed as a possible alternative scenario to the existence of super-masive black holes in the center of every galaxy. A dilute boson star has also been proposed as a large part of the non-baryonic dark matter, flattening galactic rotational velocities curves. In this contribution, we compute the profile of the emission lines of Iron; its shape has been for long known as a useful diagnosis of the space-time geometry. We compare with the case of a Schwarzschild black hole, concluding that the differences are observationally distinguishable.Comment: 14 pages, 7 figure

    Comparisons of various model fits to the Iron line profile in MCG-6-30-15

    Get PDF
    The broad Iron line in MCG-6-30-15 is fitted to the Comptonization model where line broadening occurs due to Compton down-scattering in a highly ionized optically thick cloud. These results are compared to the disk line model where the broadening is due to Gravitational/Doppler effects in the vicinity of a black hole. We find that both models fit the data well and it is not possible to differentiate between them by fitting only the ASCA data. The best fit temperature and optical depth of the cloud are found to be kT = 0.54 keV and τ=4.0\tau = 4.0 from the Comptonization model. This model further suggests that while the temperature can be assumed to be constant, the optical depth varies during the observation period. We emphasis an earlier conclusion that simultaneous broad band data (3−503 - 50 keV) can rule out (or confirm) the Comptonization model.Comment: 4 figures. uses aasms4.sty, accepted by ApJ, email: [email protected]

    Can the unresolved X-ray background be explained by emission from the optically-detected faint galaxies of the GOODS project?

    Full text link
    The emission from individual X-ray sources in the Chandra Deep Fields and XMM-Newton Lockman Hole shows that almost half of the hard X-ray background above 6 keV is unresolved and implies the existence of a missing population of heavily obscured active galactic nuclei (AGN). We have stacked the 0.5-8 keV X-ray emission from optical sources in the Great Observatories Origins Deep Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these galaxies, which are individually undetected in X-rays, are hosting the hypothesised missing AGN. In the 0.5-6 keV energy range the stacked-source emission corresponds to the remaining 10-20 per cent of the total background -- the fraction that has not been resolved by Chandra. The spectrum of the stacked emission is consistent with starburst activity or weak AGN emission. In the 6-8 keV band, we find that upper limits to the stacked X-ray intensity from the GOODS galaxies are consistent with the ~40 per cent of the total background that remains unresolved, but further selection refinement is required to identify the X-ray sources and confirm their contribution.Comment: 7 pages, 1 figure, accepted for publication in MNRA

    Evidence for a Variable Ultrafast Outflow in the Newly Discovered Ultraluminous Pulsar NGC 300 ULX-1

    Get PDF
    Ultraluminous pulsars are a definite proof that persistent super-Eddington accretion occurs in nature. They support the scenario according to which most Ultraluminous X-ray Sources (ULXs) are super-Eddington accretors of stellar mass rather than sub-Eddington intermediate mass black holes. An important prediction of theories of supercritical accretion is the existence of powerful outflows of moderately ionized gas at mildly relativistic speeds. In practice, the spectral resolution of X-ray gratings such as RGS onboard XMM-Newton is required to resolve their observational signatures in ULXs. Using RGS, outflows have been discovered in the spectra of 3 ULXs (none of which are currently known to be pulsars). Most recently, the fourth ultraluminous pulsar was discovered in NGC 300. Here we report detection of an ultrafast outflow (UFO) in the X-ray spectrum of the object, with a significance of more than 3{\sigma}, during one of the two simultaneous observations of the source by XMM-Newton and NuSTAR in December 2016. The outflow has a projected velocity of 65000 km/s (0.22c) and a high ionisation factor with a log value of 3.9. This is the first direct evidence for a UFO in a neutron star ULX and also the first time that this its evidence in a ULX spectrum is seen in both soft and hard X-ray data simultaneously. We find no evidence of the UFO during the other observation of the object, which could be explained by either clumpy nature of the absorber or a slight change in our viewing angle of the accretion flow.Comment: 10 pages, 4 figures. Accepted to MNRA

    XMM-Newton Observations of High Redshift Quasars

    Full text link
    We report on our XMM observations of the high redshift quasars BR 2237--0607 (z=4.558) and BR 0351--1034 (z=4.351), together with 14 other z>4 objects found in the XMM public archive. Contrary to former reports, we do not find high redshift radio-loud quasars to be more absorbed than their radio-quiet counterparts. We find that the optical to X-ray spectral index alpha-ox is correlated with the luminosity density at 2500 A, but does not show a correlation with redshift. The mean 2-10 keV power-law slope of the 9 high redshift radio-quiet quasars in our sample for which a spectral analysis can be performed is alpha-x1.23+-0.48, similar to alpha-x=1.19 found from the ASCA observations of low redshift Narrow-Line Seyfert 1 galaxies (NLS1s), and significantly different from alpha-x=0.78 found for low redshift Broad-Line Seyfert galaxies. While the optical/UV spectra of low to high redshift quasars look remarkably similar, we find a first indication of a difference in their X-ray spectrum. The steep X-ray spectral index suggests high Eddington ratios L/L_Edd. These observations give credence to the hypothesis of Mathur (2000) that NLS1s are low luminosity cousins of high redshift quasars, both likely to be in their early evolutionary stage.Comment: 25 pages, AJ, in press (Jan 2006

    Upper and lower bounds on the mean square radius and criteria for occurrence of quantum halo states

    Full text link
    In the context of non-relativistic quantum mechanics, we obtain several upper and lower limits on the mean square radius applicable to systems composed by two-body bound by a central potential. A lower limit on the mean square radius is used to obtain a simple criteria for the occurrence of S-wave quantum halo sates.Comment: 12 pages, 2 figure

    Scaling Laws for Advection Dominated Flows: Applications to Low Luminosity Galactic Nuclei

    Get PDF
    We present analytical scaling laws for self-similar advection dominated flows. The spectra from these systems range from 108^{8} - 1020^{20} Hz, and are determined by considering cooling of electrons through synchrotron, bremsstrahlung, and Compton processes. We show that the spectra can be quite accurately reproduced without detailed numerical calculations, and that there is a strong testable correlation between the radio and X-ray fluxes from these systems. We describe how different regions of the spectrum scale with the mass of the accreting black hole, MM, the accretion rate of the gas, M˙\dot{M}, and the equilibrium temperature of the electrons, TeT_e. We show that the universal radio spectral index of 1/3 observed in most elliptical galaxies (Slee et al. 1994) is a natural consequence of self-absorbed synchrotron radiation from these flows. We also give expressions for the total luminosity of these flows, and the critical accretion rate, M˙crit\dot{M}_{crit}, above which the advection solutions cease to exist. We find that for most cases of interest the equilibrium electron temperature is fairly insensitive to MM, M˙\dot{M}, and parameters in the model. We apply these results to low luminosity black holes in galactic nuclei. We show that the problem posed by Fabian & Canizares (1988) of whether bright elliptical galaxies host dead quasars is resolved, as pointed out recently by Fabian & Rees (1995), by considering advection-dominated flows.Comment: 30 pages, 5 postscript files. Accepted to ApJ. Also available http://cfa-www.harvard.edu/~rohan/publications.htm

    Nature versus Nurture: The curved spine of the galaxy cluster X-ray luminosity -- temperature relation

    Get PDF
    The physical processes that define the spine of the galaxy cluster X-ray luminosity -- temperature (L-T) relation are investigated using a large hydrodynamical simulation of the Universe. This simulation models the same volume and phases as the Millennium Simulation and has a linear extent of 500 h^{-1} Mpc. We demonstrate that mergers typically boost a cluster along but also slightly below the L-T relation. Due to this boost we expect that all of the very brightest clusters will be near the peak of a merger. Objects from near the top of the L-T relation tend to have assembled much of their mass earlier than an average halo of similar final mass. Conversely, objects from the bottom of the relation are often experiencing an ongoing or recent merger.Comment: 8 pages, 7 figures, submitted to MNRA

    New Constraints on the Black Hole Low/Hard State Inner Accretion Flow with NuSTAR

    Get PDF
    We report on an observation of the Galactic black hole candidate GRS 1739-278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising "low/hard" state, at a flux of ~0.3 Crab. A broad, skewed iron line and disk reflection spectrum are revealed. Fits to the sensitive NuSTAR spectra with a number of relativistically blurred disk reflection models yield strong geometrical constraints on the disk and hard X-ray "corona". Two models that explicitly assume a "lamppost" corona find its base to have a vertical height above the black hole of h = 5 (+7, -2) GM/c^2 and h = 18 +/-4 GM/c^2 (90% confidence errors); models that do not assume a "lamppost" return emissivity profiles that are broadly consistent with coronae of this size. Given that X-ray microlensing studies of quasars and reverberation lags in Seyferts find similarly compact coronae, observations may now signal that compact coronae are fundamental across the black hole mass scale. All of the models fit to GRS 1739-278 find that the accretion disk extends very close to the black hole - the least stringent constraint is r = 5 (+3,-4) GM/c^2. Only two of the models deliver meaningful spin constraints, but a = 0.8 +/-0.2 is consistent with all of the fits. Overall, the data provide especially compelling evidence of an association between compact hard X-ray coronae and the base of relativistic radio jets in black holes.Comment: Accepted for publication in ApJ Letter
    • 

    corecore