9 research outputs found

    Spatial encoding in spinal sensorimotor circuits differs in different wild type mice strains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies in the rat have shown that the spatial organisation of the receptive fields of nociceptive withdrawal reflex (NWR) system are functionally adapted through experience dependent mechanisms, termed somatosensory imprinting, during postnatal development. Here we wanted to clarify 1) if mice exhibit a similar spatial encoding of sensory input to NWR as previously found in the rat and 2) if mice strains with a poor learning capacity in various behavioural tests, associated with deficient long term potention, also exhibit poor adaptation of NWR.</p> <p>The organisation of the NWR system in two adult wild type mouse strains with normal long term potentiation (LTP) in hippocampus and two adult wild type mouse strains exhibiting deficiencies in corresponding LTP were used and compared to previous results in the rat. Receptive fields of reflexes in single hindlimb muscles were mapped with CO<sub>2 </sub>laser heat pulses.</p> <p>Results</p> <p>While the spatial organisation of the nociceptive receptive fields in mice with normal LTP were very similar to those in rats, the LTP impaired strains exhibited receptive fields of NWRs with aberrant sensitivity distributions. However, no difference was found in NWR thresholds or onset C-fibre latencies suggesting that the mechanisms determining general reflex sensitivity and somatosensory imprinting are different.</p> <p>Conclusion</p> <p>Our results thus confirm that sensory encoding in mice and rat NWR is similar, provided that mice strains with a good learning capability are studied and raise the possibility that LTP like mechanisms are involved in somatosensory imprinting.</p

    Effects of electrically induced muscle contraction on flexion reflex in human spinal cord injury

    No full text
    Study aims to examine changes in the magnitude of the flexion reflex following functional electrical stimulation (FES) of the rectus femoris (RF) muscle. The incidence of the early component of the flexion reflex (120 ms) was observed in all subjects during control conditions and following sensorimotor conditioning. FES applied to the RF muscle (above and below MT) in the main induced a significant early and long lasting depression of the long latency flexion reflex. The depression of the flexion reflex was a result of multisensory actions on flexion reflex pathways resulting from the direct and indirect (mechanical) consequences of electrically induced muscle contraction on cutaneous and muscle afferents. Our findings emphasize the importance of sensory feedback mechanisms in modulating flexion reflex excitability, and highlight the need for rehabilitation professionals to consider the central actions of FES-induced afferent feedback when incorporating FES into a rehabilitation program
    corecore