46 research outputs found
Binary Population Synthesis: Methods, Normalization, and Surprises
In this paper we present a brief overview of population synthesis methods
with a discussion of their main advantages and disadvantages. In the second
part, we present some recent results from synthesis models of close binary
compact objects with emphasis on the predicted rates, their uncertainties, and
the model input parameters the rates are most sensitive to. We also report on a
new evolutionary path leading to the formation of close double neutron stars
(NS), with the unique characteristic that none of the two NS ever had the
chance to be recycled by accretion. Their formation rates turn out to be
comparable to or maybe even higher than those of recycled NS-NS binaries (like
the ones observed), but their detection probability as binary pulsars is much
smaller because of their short lifetimes. We discuss the implications of such a
population for gravitational-wave detection of NS-NS inspiral events, and
possibly for gamma-ray bursts and their host galaxies.Comment: 15 pages, 1 figure, to appear in the proceedings ``The influence of
binaries on stellar population studies'', Brussels, August 2000 (Kluwer
Academic Publishers), ed. D.Vanbevere
Accretion of Planetary Material onto Host Stars
Accretion of planetary material onto host stars may occur throughout a star's
life. Especially prone to accretion, extrasolar planets in short-period orbits,
while relatively rare, constitute a significant fraction of the known
population, and these planets are subject to dynamical and atmospheric
influences that can drive significant mass loss. Theoretical models frame
expectations regarding the rates and extent of this planetary accretion. For
instance, tidal interactions between planets and stars may drive complete
orbital decay during the main sequence. Many planets that survive their stars'
main sequence lifetime will still be engulfed when the host stars become red
giant stars. There is some observational evidence supporting these predictions,
such as a dearth of close-in planets around fast stellar rotators, which is
consistent with tidal spin-up and planet accretion. There remains no clear
chemical evidence for pollution of the atmospheres of main sequence or red
giant stars by planetary materials, but a wealth of evidence points to active
accretion by white dwarfs. In this article, we review the current understanding
of accretion of planetary material, from the pre- to the post-main sequence and
beyond. The review begins with the astrophysical framework for that process and
then considers accretion during various phases of a host star's life, during
which the details of accretion vary, and the observational evidence for
accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
The Formation and Evolution of the First Massive Black Holes
The first massive astrophysical black holes likely formed at high redshifts
(z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations.
These black holes grow by mergers and gas accretion, evolve into the population
of bright quasars observed at lower redshifts, and eventually leave the
supermassive black hole remnants that are ubiquitous at the centers of galaxies
in the nearby universe. The astrophysical processes responsible for the
formation of the earliest seed black holes are poorly understood. The purpose
of this review is threefold: (1) to describe theoretical expectations for the
formation and growth of the earliest black holes within the general paradigm of
hierarchical cold dark matter cosmologies, (2) to summarize several relevant
recent observations that have implications for the formation of the earliest
black holes, and (3) to look into the future and assess the power of
forthcoming observations to probe the physics of the first active galactic
nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant
Universe", Ed. A. J. Barger, Kluwer Academic Publisher
The Rossiter-McLaughlin effect in Exoplanet Research
The Rossiter-McLaughlin effect occurs during a planet's transit. It provides
the main means of measuring the sky-projected spin-orbit angle between a
planet's orbital plane, and its host star's equatorial plane. Observing the
Rossiter-McLaughlin effect is now a near routine procedure. It is an important
element in the orbital characterisation of transiting exoplanets. Measurements
of the spin-orbit angle have revealed a surprising diversity, far from the
placid, Kantian and Laplacian ideals, whereby planets form, and remain, on
orbital planes coincident with their star's equator. This chapter will review a
short history of the Rossiter-McLaughlin effect, how it is modelled, and will
summarise the current state of the field before describing other uses for a
spectroscopic transit, and alternative methods of measuring the spin-orbit
angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
Planets and Axisymmetric Mass Loss
Bipolar planetary nebulae (PNe), as well as extreme elliptical PNe are formed
through the influence of a stellar companion. But half of all PN progenitors
are not influenced by any stellar companion, and, as I show here, are expected
to rotate very slowly on reaching the upper asymptotic giant branch; hence they
expect to form spherical PNe, unless they are spun-up. But since most PNe are
not spherical, I argue that about 50 percents of AGB stars are spun-up by
planets, even planets having a mass as low as 0.01 times the mass of Jupiter,
so they form elliptical PNe. The rotation by itself will not deform the AGB
wind, but may trigger another process that will lead to axisymmetric mass loss,
e.g., weak magnetic activity, as in the cool magnetic spots model. This model
also explains the transition from spherical to axisymmetric mass loss on the
upper AGB. For such low mass planets to substantially spin-up the stellar
envelope, they should enter the envelope when the star reaches the upper AGB.
This "fine-tuning" can be avoided if there are several planets on average
around each star, as is the case in the solar system, so that one of them is
engulfed when the star reaches the upper AGB.Comment: 8 pages, 1 figure. To appear in the proceedings of the conference,
"Post-AGB Objects (proto-planetary nebulae) as a Phase of Stellar Evolution",
Torun, Poland, July 5-7, 2000, eds. R. Szczerba, R. Tylenda, and S.K. Gorn
Galactic Effects on Habitability
The galactic environment has been suspected to influence planetary
habitability in many ways. Very metal-poor regions of the Galaxy, or those
largely devoid of atoms more massive than H and He, are thought to be unable to
form habitable planets. Moreover, if such planets do form, the young system is
subjected to close stellar passages while it resides in its stellar birth
cluster. Various potential hazards remain after clusters disperse. For
instance, central galactic regions may present risks to habitability via nearby
supernovae, gamma ray bursts (GRBs), and frequent comet showers. In addition,
planets residing within very wide binary star systems are affected by the
Galaxy, as local gravitational perturbations from the Galaxy can increase the
binary's eccentricity until it destabilizes the planets it hosts. Here we
review the most recent work on the main galactic influences over planetary
habitability. Although there must be some metallicity limit below which rocky
planets cannot form, recent exoplanet surveys show that they form around stars
with a very large range of metallicities. Once formed, the probability of star
clusters destabilizing planetary systems only becomes high for rare, extremely
long-lived clusters. Regarding threats to habitability from supernovae, GRBs,
and comet showers, many recent studies suggest that their hazards are more
limited than originally thought. Finally, denser regions of the Galaxy enhance
the threat that very wide binary companions pose to planetary habitability, but
the probability that a very wide binary star disrupts habitability will always
be substantially below 100% for any environment. While some Milky Way regions
must be more hospitable to habitable planets than others, it is difficult to
state that habitable planets are confined to any well-defined region of the
Galaxy or that any other particular region of the Galaxy is uninhabitable.Comment: Invited review chapter, accepted for publication in the "Handbook of
Exoplanets"; 19 pages; 2 figure
Populations of planets in multiple star systems
Astronomers have discovered that both planets and binaries are abundant
throughout the Galaxy. In combination, we know of over 100 planets in binary
and higher-order multi-star systems, in both circumbinary and circumstellar
configurations. In this chapter we review these findings and some of their
implications for the formation of both stars and planets. Most of the planets
found have been circumstellar, where there is seemingly a ruinous influence of
the second star if sufficiently close (<50 AU). Hosts of hot Jupiters have been
a particularly popular target for binary star studies, showing an enhanced rate
of stellar multiplicity for moderately wide binaries (>100 AU). This was
thought to be a sign of Kozai-Lidov migration, however recent studies have
shown this mechanism to be too inefficient to account for the majority of hot
Jupiters. A couple of dozen circumbinary planets have been proposed around both
main sequence and evolved binaries. Around main sequence binaries there are
preliminary indications that the frequency of gas giants is as high as those
around single stars. There is however a conspicuous absence of circumbinary
planets around the tightest main sequence binaries with periods of just a few
days, suggesting a unique, more disruptive formation history of such close
stellar pairs.Comment: Invited review chapter, accepted for publication in "Handbook of
Exoplanets", ed. H. Deeg & J. A. Belmont
Relativistic Binaries in Globular Clusters
Galactic globular clusters are old, dense star systems typically containing
10\super{4}--10\super{7} stars. As an old population of stars, globular
clusters contain many collapsed and degenerate objects. As a dense population
of stars, globular clusters are the scene of many interesting close dynamical
interactions between stars. These dynamical interactions can alter the
evolution of individual stars and can produce tight binary systems containing
one or two compact objects. In this review, we discuss theoretical models of
globular cluster evolution and binary evolution, techniques for simulating this
evolution that leads to relativistic binaries, and current and possible future
observational evidence for this population. Our discussion of globular cluster
evolution will focus on the processes that boost the production of hard binary
systems and the subsequent interaction of these binaries that can alter the
properties of both bodies and can lead to exotic objects. Direct {\it N}-body
integrations and Fokker--Planck simulations of the evolution of globular
clusters that incorporate tidal interactions and lead to predictions of
relativistic binary populations are also discussed. We discuss the current
observational evidence for cataclysmic variables, millisecond pulsars, and
low-mass X-ray binaries as well as possible future detection of relativistic
binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl
