8 research outputs found

    ‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion

    Get PDF
    We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200 °K emitter temperature, output power density 2 W/cm[superscript 2] with ~47% efficiency at 300 nm vacuum gap; at 2100 °K, 24 W/cm[superscript 2] with ~57% efficiency at 200 nm gap; and, at 3000 °K, 115 W/cm[superscript 2] with ~61% efficiency at 140 nm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a ‘squeezed’ narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001

    Quantitative characterization and modeling of sub-bandgap absorption features in thin oxide films from spectroscopic ellipsometry data

    No full text

    Planning the Procedure

    No full text

    Hafnium Monocarbide

    No full text

    Tantalum Carbides

    No full text
    corecore