6 research outputs found

    Generalized Toda Theory from Six Dimensions and the Conifold

    Get PDF
    Recently, a physical derivation of the Alday-Gaiotto-Tachikawa correspondence has been put forward. A crucial role is played by the complex Chern-Simons theory arising in the 3d-3d correspondence, whose boundary modes lead to Toda theory on a Riemann surface. We explore several features of this derivation and subsequently argue that it can be extended to a generalization of the AGT correspondence. The latter involves codimension two defects in six dimensions that wrap the Riemann surface. We use a purely geometrical description of these defects and find that the generalized AGT setup can be modeled in a pole region using generalized conifolds. Furthermore, we argue that the ordinary conifold clarifies several features of the derivation of the original AGT correspondence.Comment: 27+2 pages, 3 figure

    Forensic genetics and genomics: Much more than just a human affair

    No full text

    Degradation of Cell Walls by Plant Pathogens

    No full text
    corecore