5 research outputs found

    Immunohistochemical Analysis of the Effects of Cross-innervation of Murine Thyroarytenoid and Sternohyoid Muscles

    No full text
    This work uses cross-innervation of respiratory muscles of different developmental origins to probe myogenic and neurogenic mechanisms regulating their fiber types. The thyroarytenoid (TA) originates from the sixth branchial arch, whereas the sternohyoid (SH) is derived from somitic mesoderm. Immunohistochemical analysis using highly specific monoclonal antibodies to myosin heavy chain (MyHC) isoforms reveals that normal rat SH comprises slow, 2a, 2x, and 2b fibers, as in limb fast muscles, whereas the external division of the TA has only 2b/eo fibers coexpressing 2B and extraocular (EO) MyHCs. Twelve weeks after cross-innervation with the recurrent laryngeal nerve, the SH retained slow and 2a fibers, greatly increased the proportion of 2x fibers, and their 2b fibers failed to express EO MyHC. In the cross-innervated TA, the SH nerve failed to induce slow and 2A MyHC expression and failed to suppress EO MyHC expression in 2b/eo fibers. However, 2x fibers amounting to 4.2% appeared de novo in the external division of the TA. We conclude that although MyHC gene expression in these muscles can be modulated by neural activity, the patterns of response to altered innervation are largely myogenically determined, thus supporting the idea that SH and TA differ in muscle allotype. (J Histochem Cytochem 58:1057–1065, 2010

    Immunohistochemical Analysis of Laryngeal Muscles in Normal Horses and Horses With Subclinical Recurrent Laryngeal Neuropathy

    No full text
    We used immunohistochemistry to examine myosin heavy-chain (MyHC)-based fiber-type profiles of the right and left cricoarytenoideus dorsalis (CAD) and arytenoideus transversus (TrA) muscles of six horses without laryngoscopic evidence of recurrent laryngeal neuropathy (RLN). Results showed that CAD and TrA muscles have the same slow, 2a, and 2x fibers as equine limb muscles, but not the faster contracting fibers expressing extraocular and 2B MyHCs found in laryngeal muscles of small mammals. Muscles from three horses showed fiber-type grouping bilaterally in the TrA muscles, but only in the left CAD. Fiber-type grouping suggests that denervation and reinnervation of fibers had occurred, and that these horses had subclinical RLN. There was a virtual elimination of 2x fibers in these muscles, accompanied by a significant increase in the percentage of 2a and slow fibers, and hypertrophy of these fiber types. The results suggest that multiple pathophysiological mechanisms are at work in early RLN, including selective denervation and reinnervation of 2x muscle fibers, corruption of neural impulse traffic that regulates 2x and slow muscle fiber types, and compensatory hypertrophy of remaining fibers. We conclude that horses afflicted with mild RLN are able to remain subclinical by compensatory hypertrophy of surviving muscle fibers. (J Histochem Cytochem 57:787–800, 2009
    corecore